精英家教网 > 高中数学 > 题目详情

【题目】在参加某次社会实践的学生中随机选取名学生的成绩作为样本,这名学生的成绩全部在分至分之间,现将成绩按如下方式分成组:第一组,成绩大于等于分且小于分;第二组,成绩大于等于分且小于分;第六组,成绩大于等于分且小于等于分,据此绘制了如图所示的频率分布直方图.在选取的名学生中.

Ⅰ)求的值及成绩在区间内的学生人数.

Ⅱ)从成绩小于分的学生中随机选名学生,求最多有名学生成绩在区间内的概率.

【答案】(1),6(2)

【解析】分析:(1)根据所有小长方形面积的和为1,求的值,根据频数等于总数与频率的乘积得成绩在区间内的学生人数.(2)先根据频率得, 利用组合数求总事件数,再求两名学生都在事件数,最后根据古典概型概率公式求结果.

详解:

成绩在区间内的学生人数为

人,

人,

两名学生都在概率为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设命题:函数的定义域为;命题:关于的方程有实根.

(1)如果是真命题,求实数的取值范围.

(2)如果命题“”为真命题,且“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一装有水的直三棱柱容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面水平放置,如图所示,点 分别在棱 上,水面恰好过点 ,且

(1)证明:

(2)若底面水平放置时,求水面的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆 ,点.

(1)求经过点且与圆相切的直线的方程;

(2)过点的直线与圆相交于两点, 为线段的中点,求线段长度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别是 ,且点在椭圆上.

(1)求椭圆的标准方程;

(2)设椭圆的左顶点为,过点的直线与椭圆相交于异于的不同两点 ,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中装有个形状大小完全相同的小球,球的编号分别为

Ⅰ)若从袋中每次随机抽取个球,有放回的抽取次,求取出的两个球编号之和为的概率.

Ⅱ)若从袋中每次随机抽取个球,有放回的抽取次,求恰有次抽到号球的概率.

Ⅲ)若一次从袋中随机抽取个球,记球的最大编号为,求随机变量的分布列.

Ⅳ)若从袋中每次随机抽取个球,有放回的抽取次,记球的最大编号为,求随机变量的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在游学活动中,在处参观的第组同学通知在处参观的第组同学:第组正离开处向的东南方向游玩,速度约为米/分钟.已知的南偏西方向且相距米,第组同学立即出发沿直线行进并用分钟与第组同学汇合.

)设第组同学行进的方位角为,求

(方位角:从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角)

)求第组同学的行进速度为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当曲线与直线有两个相异的交点时,实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,曲线上任意一点满足;曲线上的点轴的右边且的距离与它到轴的距离的差为1.

(1)求的方程;

(2)过的直线相交于点,直线分别与相交于点.求的取值范围.

查看答案和解析>>

同步练习册答案