【题目】如图,在平面直角坐标系中,椭圆的左、右焦点分别为,为椭圆上一点(在轴上方),连结并延长交椭圆于另一点,设.
(1)若点的坐标为,且的周长为8,求椭圆的方程;
(2)若垂直于轴,且椭圆的离心率,求实数的取值范围.
【答案】(1)(2)[,5].
【解析】
试题分析:(1)根据椭圆定义,将三角形周长转化为:4a=8,再结合点P在椭圆上,得,解方程组得a=2,b2=3.(2)由于垂直于轴,所以P(c,).再根据,可求得Q(-c,-).代入椭圆方程得+=1,即λ=,最后根据,确定实数的取值范围.
试题解析:(1)因为F1,F2为椭圆C的两焦点,且P,Q为椭圆上的点,
所以PF1+PF2=QF1+QF2=2a,从而△PQF2的周长为4a.
由题意,得4a=8,解得a=2.
因为点P的坐标为 (1,),所以,
解得b2=3.
所以椭圆C的方程为.
(2)方法一:因为PF2⊥x轴,且P在x轴上方,故设P(c,y0),y0>0.设Q(x1,y1).
因为P在椭圆上,所以,解得y0=,即P(c,).
因为F1(-c,0),所以=(-2c,-),=(x1+c,y1).
由=λ,得-2c=λ(x1+c),-=λy1,
解得x1=-c,y1=-,所以Q(-c,-).
因为点Q在椭圆上,所以()2e2+=1,
即(λ+2)2e2+(1-e2)=λ2,(λ2+4λ+3)e2=λ2-1,
因为λ+1≠0,
所以(λ+3)e2=λ-1,从而λ=.
因为e∈[,],所以≤e2≤,即≤λ≤5.
所以λ的取值范围为[,5].
方法二:因为PF2⊥x轴,且P在x轴上方,故设P(c,y0),y0>0.
因为P在椭圆上,所以+=1,解得y0=,即P(c,).
因为F1(-c,0),故直线PF1的方程为y= (x+c).
由,得(4c2+b2)x2+2b2cx+c2(b2-4a2)=0.
因为直线PF1与椭圆有一个交点为P(c,).设Q(x1,y1),
则x1+c=-,即-c-x1=.
因为=λ,
所以λ=====.
因为e∈[,],所以≤e2≤,即≤λ≤5.
所以λ的取值范围为[,5].
科目:高中数学 来源: 题型:
【题目】下列说法不正确的是( )
A. , 为不共线向量,若,则
B. 若, 为平面内两个不相等向量,则平面内任意向量都可以表示为
C. 若, ,则与不一定共线
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
⑴从区间内任取一个实数,设事件表示“函数在区间上有两个不同的零点”,求事件发生的概率;
⑵若联系掷两次一颗均匀的骰子(骰子六个面上标注的点数分别为)得到的点数分别为和,记事件表示“在上恒成立”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知坐标平面上点与两个定点, 的距离之比等于.
(1)求点的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为,过点的直线被所截得的线段的长为,求直线的方程
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学举行了一次“环保知识竞赛”活动. 为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计. 按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).
(1)求样本容量和频率分布直方图中的,的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的3名同学中得分在[80,90)的学生人数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线: 恒过定点,圆经过点和点,且圆心在直线上.
(1)求定点的坐标;
(2)求圆的方程;
(3)已知点为圆直径的一个端点,若另一个端点为点,问:在轴上是否存在一点,使得为直角三角形,若存在,求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中,正确的有__________.(写出所有正确说法的序号)
①已知关于的不等式的角集为,则实数的取值范围是.
②已知等比数列的前项和为,则、、也构成等比数列.
③已知函数(其中且)在上单调递减,且关于的方程恰有两个不相等的实数解,则.
④已知,且,则的最小值为.
⑤在平面直角坐标系中, 为坐标原点, 则的取值范围是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在长方体中,分别是的中点,,过三点的的平面截去长方体的一个角后.得到如图所示的几何体,且这个几何体的体积为.
(1)求证:平面;
(2)求的长;
(3)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com