精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆C: (ab>0)的离心率为,其左焦点到点的距离为.不过原点O的直线与C相交于AB两点,且线段AB被直线OP平分.

(1)求椭圆C的方程;

(2)求ABP的面积取最大时直线l的方程.

【答案】(1) ;(2) 直线l的方程为 .

【解析】试题分析:

(1)由题意可得.则所求椭圆C的方程为:

(2)首先设出点的坐标,设而不求可得直线AB的斜率为,然后联立直线与椭圆的方程,结合面积函数,利用导函数研究三角形面积的最大值可得ABP的面积取最大时直线l的方程是 .

试题解析:

(1)由题意可得

左焦点到点的距离为:

由①②可解得:

∴所求椭圆C的方程为:

(2)易得直线OP的方程: ,设A(xAyA)B(xByB)R(x0y0)

其中y0x0AB在椭圆上,

设直线AB的方程为 (m≠0),代入椭圆:

整理得:

显然

m≠0.由上又有:

AB||

∵点到直线l的距离表示为:

SABP

m≠0 ,令

解得,( ),

时, 递增,

时, 递减,

所以,当且仅当时, ABP的面积取最大,

此时,直线l的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】据统计,2016年“双十”天猫总成交金额突破1207亿元.某购物网站为优化营销策略,对11月11日当天在该网站进行网购消费且消费金额不超过1000元的1000名网购者(其中有女性800名,男性200名)进行抽样分析.采用根据性别分层抽样的方法从这1000名网购者中抽取100名进行分析,得到下表:(消费金额单位:元)

女性消费情况:

消费金额

人数

5

10

15

47

男性消费情况:

消费金额

人数

2

3

10

2

(1)计算的值;在抽出的100名且消费金额在(单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者恰好是一男一女的概率;

(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”

女性

男性

总计

网购达人

非网购达人

总计

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列哪组中的函数f(x)与g(x)相等(
A.f(x)=x2
B.f(x)=x+1,g(x)= +1
C.f(x)=x,g(x)=
D.f(x)= ,g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣1﹣x.
(1)若存在x∈[﹣1,ln ],满足a﹣ex+1+x<0成立,求实数a的取值范围.
(2)当x≥0时,f(x)≥(t﹣1)x恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两条直线l1:y=a和l2:y= (其中a>0),若直线l1与函数y=|log4x|的图象从左到右相交于点A,B,直线l2与函数y=|log4x|的图象从左到右相交于点C,D.记线段AC和BD在x轴上的投影长度分别为 m,n.令f(a)=log4
(1)求f(a)的表达式;
(2)当a变化时,求出f(a)的最小值,并指出取得最小值时对应的a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位组织职工去某地参观学习,需包车前往,甲车队说:“如果领队买一张全票,其余人可享受7折优惠。”乙车队说:“你们属于团体票,按原价的7.5折优惠。”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,一根水平放置的长方体枕木的安全负荷与它的厚度d的平方和宽度a的乘积成正比,与它的长度l的平方成反比.

(1)在a>d>0的条件下,将此枕木翻转90°(即宽度变为了厚度),枕木的安全负荷会发生变化吗?变大还是变小?
(2)现有一根横截面为半圆(半圆的半径为R= )的柱形木材,用它截取成横截面为长方形的枕木,其长度即为枕木规定的长度l,问横截面如何截取,可使安全负荷最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态,一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:车辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .

(1)为了评价两种模型的拟合效果,完成以下任务:

①完成下表(计算结果精确到0.1)(备注: 称为相应于点的残差(也叫随机误差));

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

②分别计算模型甲与模型乙的残差平方和,并通过比较 的大小,判断哪个模型拟合效果更好.

(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放,根据市场调查,这个城市投放8千辆时,该公司平均一辆单一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6,问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入—成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:关于x的不等式x2+(a﹣1)x+a2<0的解集是空集,命题q:已知二次函数f(x)=x2﹣mx+2满足 ,且当x∈[0,a]时,最大值是2,若命题“p且q”为假,“p或q”为真,求实数a的取值范围.

查看答案和解析>>

同步练习册答案