【题目】如图,椭圆C: (a>b>0)的离心率为,其左焦点到点的距离为.不过原点O的直线与C相交于A,B两点,且线段AB被直线OP平分.
(1)求椭圆C的方程;
(2)求ABP的面积取最大时直线l的方程.
【答案】(1) ;(2) 直线l的方程为 .
【解析】试题分析:
(1)由题意可得.则所求椭圆C的方程为: .
(2)首先设出点的坐标,设而不求可得直线AB的斜率为,然后联立直线与椭圆的方程,结合面积函数,利用导函数研究三角形面积的最大值可得ABP的面积取最大时直线l的方程是 .
试题解析:
(1)由题意可得: ①;
左焦点到点的距离为: ②.
由①②可解得: .
∴所求椭圆C的方程为: .
(2)易得直线OP的方程: ,设A(xA,yA),B(xB,yB),R(x0,y0).
其中y0=x0.∵A,B在椭圆上,
∴.
设直线AB的方程为 (m≠0),代入椭圆: ,
整理得: .
显然.
∴﹣且m≠0.由上又有: , .
∴AB=||= = .
∵点到直线l的距离表示为: .
∴SABP= = ,
令,
则,
﹣且m≠0, ,令则,
解得,( ),
当时, 递增,
当时, 递减,
所以,当且仅当时, ABP的面积取最大,
此时,直线l的方程为 .
科目:高中数学 来源: 题型:
【题目】据统计,2016年“双十”天猫总成交金额突破1207亿元.某购物网站为优化营销策略,对11月11日当天在该网站进行网购消费且消费金额不超过1000元的1000名网购者(其中有女性800名,男性200名)进行抽样分析.采用根据性别分层抽样的方法从这1000名网购者中抽取100名进行分析,得到下表:(消费金额单位:元)
女性消费情况:
消费金额 | |||||
人数 | 5 | 10 | 15 | 47 |
男性消费情况:
消费金额 | |||||
人数 | 2 | 3 | 10 | 2 |
(1)计算,的值;在抽出的100名且消费金额在(单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者恰好是一男一女的概率;
(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”
女性 | 男性 | 总计 | |
网购达人 | |||
非网购达人 | |||
总计 |
附:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列哪组中的函数f(x)与g(x)相等( )
A.f(x)=x2 ,
B.f(x)=x+1,g(x)= +1
C.f(x)=x,g(x)=
D.f(x)= ,g(x)=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣1﹣x.
(1)若存在x∈[﹣1,ln ],满足a﹣ex+1+x<0成立,求实数a的取值范围.
(2)当x≥0时,f(x)≥(t﹣1)x恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两条直线l1:y=a和l2:y= (其中a>0),若直线l1与函数y=|log4x|的图象从左到右相交于点A,B,直线l2与函数y=|log4x|的图象从左到右相交于点C,D.记线段AC和BD在x轴上的投影长度分别为 m,n.令f(a)=log4 .
(1)求f(a)的表达式;
(2)当a变化时,求出f(a)的最小值,并指出取得最小值时对应的a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位组织职工去某地参观学习,需包车前往,甲车队说:“如果领队买一张全票,其余人可享受7折优惠。”乙车队说:“你们属于团体票,按原价的7.5折优惠。”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,一根水平放置的长方体枕木的安全负荷与它的厚度d的平方和宽度a的乘积成正比,与它的长度l的平方成反比.
(1)在a>d>0的条件下,将此枕木翻转90°(即宽度变为了厚度),枕木的安全负荷会发生变化吗?变大还是变小?
(2)现有一根横截面为半圆(半圆的半径为R= )的柱形木材,用它截取成横截面为长方形的枕木,其长度即为枕木规定的长度l,问横截面如何截取,可使安全负荷最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态,一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:车辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
租用单车数量(千辆) | 2 | 3 | 4 | 5 | 8 |
每天一辆车平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注: , 称为相应于点的残差(也叫随机误差));
租用单车数量(千辆) | 2 | 3 | 4 | 5 | 8 | |
每天一辆车平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 | 0.1 | ||||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 |
②分别计算模型甲与模型乙的残差平方和及,并通过比较, 的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放,根据市场调查,这个城市投放8千辆时,该公司平均一辆单一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6,问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入—成本).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题p:关于x的不等式x2+(a﹣1)x+a2<0的解集是空集,命题q:已知二次函数f(x)=x2﹣mx+2满足 ,且当x∈[0,a]时,最大值是2,若命题“p且q”为假,“p或q”为真,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com