精英家教网 > 高中数学 > 题目详情
5.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{16}=1\;\;(a>0)$的左、右焦点分别为F1,F2,点P在椭圆C上,如果|PF1|+|PF2|=10,那么椭圆C的离心率为$\frac{3}{5}$.

分析 利用椭圆的定义求出a,然后求解椭圆的离心率即可.

解答 解:椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{16}=1\;\;(a>0)$的左、右焦点分别为F1,F2,点P在椭圆C上,如果|PF1|+|PF2|=10,
可得a=5,b=4.c=3,则e=$\frac{c}{a}$=$\frac{3}{5}$.
故答案为:$\frac{3}{5}$.

点评 本题考查椭圆的定义以及简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若实数x,y满足$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\end{array}\right.$,则2x+y的最大值是14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(b>a>0)$的左焦点F1(-c,0)(c>0)作圆x2+y2=$\frac{{a}^{2}}{4}$的切线,切点为E,延长F1E交双曲线右支于点P.若E是F1P中点,则双曲线的离心率为(  )
A.$\frac{5}{2}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一个几何体的三视图如图所示,那么这个几何体的表面积是$16+2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,且经过点(0,1),四边形MNPQ的四个顶点都在椭圆C上,对角线MP所在直线的斜率为-1,且MN=MQ,PN=PQ.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求四边形MNPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线C:y2=2px(p>0)的焦点为F,且经过点A(1,2),过点F的直线与抛物线C交于P,Q两点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)O为坐标原点,直线OP,OQ与直线x=-$\frac{p}{2}$分别交于S,T两点,试判断$\overrightarrow{FS}$•$\overrightarrow{FT}$是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若双曲线$\frac{x^2}{m^2}-{y^2}=1(m>0)$的一条渐近线方程为$x+\sqrt{3}y=0$,则m=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.惠城某影院共有100个座位,票价不分等次.根据该影院的经营经验,当每张标价不超过10元时,票可全部售出;当每张票价高于10元时,每提高1元,将有3张票不能售出.为了获得更好的收益,需给影院定一个合适的票价,符合的基本条件是:
①为方便找零和算帐,票价定为1元的整数倍;
②影院放映一场电影的成本费用支出为575元,票房收入必须高于成本支出.
用x(元)表示每张票价,用y(元)表示该影院放映一场的净收入(除去成本费用支出后的收入).
(Ⅰ)把y表示成x的函数,并求其定义域;
(Ⅱ)试问在符合基本条件的前提下,每张票价定为多少元时,放映一场的净收入最多?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x3-$\frac{1}{2}$x2-2x+c
(1)求函数f(x)的单调区间;
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的范围.

查看答案和解析>>

同步练习册答案