精英家教网 > 高中数学 > 题目详情
由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列bn,bn=f-1(n)若对于任意n∈N*都有bn=an,则称数列{bn}是数列{an}的“自反函数列”
(1)设函数f(x)=
px+1
x+1
,若由函数f(x)确定的数列{an}的自反数列为{bn},求an
(2)已知正整数列{cn}的前项和sn=
1
2
(cn+
n
cn
).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=
-1
anSn2
,Dn是数列{dn}的前n项和,且Dn>loga(1-2a)恒成立,求a的取值范围.
分析:解:(1)由f(x)=
px+1
x+1
结合bn=f-1(n)若对于任意n∈N*都有bn=an求解,
(2)由正整数cn的前n项和sn=
1
2
(cn+
n
cn
)
则由通项与前n项和之间的关系求解,要注意分类讨论;
(3)在(1)和(2)的条件下,d1=2,∴D1=2,则n≥2时,dn=
-1
an
s
n
2
=
2
n(n-1)
,由Dn是数列dn的前n项和有Dn=1+d2+…+dn用裂项相消法求解Dn=2(2-
1
n
)
,再由Dn>loga(1-2a)恒成立,即loga(1-2a)小于Dn的最小值,只要求得Dn的最小值即可.
解答:解:(1)由题意得
f(x)=
1-x
X-P

f(x)= 
PX+1
X+1
 且f-1(n)=f (n)

∴P=-1∴an=
n-1
n+1


(2)∵正整数cn的前n项和sn=
1
2
(cn+
n
cn
)

c1=
1
2
(c1+
n
c1
)

解之得∴c1=1,s1=1
当n≥2时,cn=sn-sn-1
2sn=sn-sn-1+
n
sn-sn-1

sn+sn-1=
n
sn-sn-1

sn2-sn-12=n
∴sn-12-sn-22=n-1
sn-22-sn-22=n-2
s22-s12=2
以上各式累加,得∴sn2 =1+2+3+4+…+n=
n(n+1)
2
sn=
n(n+1)
2


(3)在(1)和(2)的条件下,d1=2∴D1=2
当n≥2时,设dn=
-1
an
s
n
2
=
2
n(n-1)
,由Dn是数列dn的前n项和
有Dn=1+d2+…+dn
=2[1+(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)…(
1
n-1
-
1
n
)]

=2(2-
1
n
)

综上Dn=2(2-
1
n
)

因为Dn>loga(1-2a)恒成立,所以loga(1-2a)小于Dn的最小值,
显然Dn的最小值在n=1时取得,即[Dn]min=2
∴loga(1-2a)<2
∴a满足的条件是
a>0且a≠1
1-2a>0
,∴loga(1-2a)<2
解得0<a<
2
-1
点评:本题一道新定义题,考查了反函数的求法,数列通项与前n项和间的关系以及累加法求通项和裂项相消法求前n项和等知识和方法,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数f(x)=2
x
确定数列{an}的反数列为{bn},求{bn}的通项公式;
(2)对(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
对任意的正整数n恒成立,求实数a的取值范围;
(3)设cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ为正整数)
,若数列{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn},求数列{tn}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),若对于任意n?N*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.
(1)若函数f(x)=
px+1
x+1
确定数列{an}的自反数列为{bn},求an
(2)在(1)条件下,记
n
1
x1
+
1
x2
+…
1
xn
为正数数列{xn}的调和平均数,若dn=
2
an+1
-1
,Sn为数列{dn}的前n项之和,Hn为数列{Sn}的调和平均数,求
lim
n→∞
=
Hn
n

(3)已知正数数列{cn}的前n项之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•浦东新区一模)由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数f(x)=2
x
确定数列{an}的反数列为{bn},求bn
(2)设cn=3n,数列{cn}与其反数列{dn}的公共项组成的数列为{tn}
(公共项tk=cp=dq,k、p、q为正整数).求数列{tn}前10项和S10
(3)对(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
对任意的正整数n恒成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)存在反函数y=f-1(x),由函数y=f(x)确定数列{an},an=f(n),由函数y=f-1(x)确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若数列{bn}是函数f(x)=
x+1
2
确定数列{an}的反数列,试求数列{bn}的前n项和Sn
(2)若函数f(x)=2
x
确定数列{cn}的反数列为{dn},求{dn}的通项公式;
(3)对(2)题中的{dn},不等式
1
dn+1
+
1
dn+2
+…+
1
d2n
1
2
log(1-2a)对任意的正整数n恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案