精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的左、右焦点分别为F1 , F2 , 离心率为 ,短轴上的两个顶点为A,B(A在B的上方),且四边形AF1BF2的面积为8.
(1)求椭圆C的方程;
(2)设动直线y=kx+4与椭圆C交于不同的两点M,N,直线y=1与直线BM交于点G,求证:A,G,N三点共线.

【答案】
(1)解:∵椭圆C的离心率 ,∴b=c,因此四边形AF1BF2是正方形.

∴a2=8,b=c=2.

∴椭圆C的方程为


(2)解:证明:将已知直线代入椭圆方程化简得:(2k2+1)x2+16kx+24=0,

△=32(2k2﹣3)>0,解得:k

由韦达定理得: ①,xMxN= ,②

设M(xM,kxM+4),N(xN,kxN+4),G(xG,1),

MB方程为:y= ,则G( ,1),

欲证A,G,N三点共线,只需证 共线,

(kxN+2)=﹣xN成立,化简得:(3k+k)xMxn=﹣6(xM+xN

将①②代入易知等式成立,则A,G,N三点共线得证


【解析】(1)椭圆C的离心率 ,可得b=c,四边形AF1BF2是正方形,即a2=8,b=c=2.(2)将已知直线代入椭圆方程化简得:(2k2+1)x2+16kx+24=0

设M(xM,kxM+4),N(xN,kxN+4),G(xG,1),

MB方程为:y= ,则G( ,1),

欲证A,G,N三点共线,只需证 ,共线,即只需(3k+k)xMxn=﹣6(xM+xN)即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015·湖南)如下图,直三棱柱ABCA1B1C1的底面是边长为2的正三角形,EF分别是BCCC1的中点.

(1)证明:平面AEF⊥平面B1BCC1

(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥FAEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等差数列,若a2+2,a4+4,a6+6构成等比数列,这数列{an}的公差d等于(
A.1
B.﹣1
C.2
D.﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形中, 分别在上, ,现将四边形沿折起,使平面平面

)若是否存在折叠后的线段上存在一点,且,使得平面?若存在,求出的值;若不存在,说明理由.

)求三棱锥的体积的最大值,并求此时点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自点A(-33)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线L所在直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题
(1)解不等式:|2x﹣1|﹣|x|<1;
(2)设a2﹣2ab+5b2=4对a,b∈R成立,求a+b的最大值及相应的a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】活水围网养鱼技术具有密度高、经济效益好的特点研究表明:活水围网养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数不超过4(尾/立方米)时,的值为(千克/年);当时,的一次函数;当达到(尾/立方米)时,因缺氧等原因,的值为(千克/年)

(1)当时,求函数的表达式;

(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是 把正确的序号都填上).

若fx=ax2+2a+bx+2其中x[2a-1,a+4]是偶函数,则实数b=2;

若函数在区间上递增,在区间上也递增,则函数必在上递增;

fx表示-2x+2与-2x2+4x+2中的较小者,则函数fx的最大值为1;

已知fx是定义在R上的不恒为零的函数,且对任意的x、yR都满足fx·y=x·fy+y·fx,则fx是奇函数Ks

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】医学上所说的“三高”通常是指血脂增高、血压增高、血糖增高等疾病.为了解“三高”疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:
(1)请将列联表补充完整;

患三高疾病

不患三高疾病

合计

6

30

合计

36


(2)能否在犯错误的概率不超过0.005的前提下认为患“三高”疾病与性别有关? 下列的临界值表供参考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2=

查看答案和解析>>

同步练习册答案