精英家教网 > 高中数学 > 题目详情
15.与直线2x-6y+1=0垂直,且与曲线f(x)=x3+3x2-1相切的直线方程是(  )
A.3x-y+2=0B.3x+y+2=0C.x+3y+2=0D.x-3y-2=0

分析 设所求的直线方程为y=-3x+m,切点为(n,n3+3n2-1),根据函数在切点处的导数即为切线的斜率,求出n值,可得切点的坐标,用点斜式求得切线的方程.

解答 解:设所求的直线方程为y=-3x+m,切点为(n,n3+3n2-1),
则由题意可得3n2+6n=-3,∴n=-1,
故切点为(-1,1),代入切线方程y=-3x+m可得m=-2,
故设所求的直线方程为y=-3x-2,即3x+y+2=0
故选B.

点评 本题考查两直线垂直的性质,两直线垂直斜率之积等于-1,函数在某点的导数的几何意义,求出切点的坐标是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,则13+23+33+43+53+63=212

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知AB是单位圆O上的一条弦,λ∈R,若$|{\overrightarrow{OA}-λ\overrightarrow{OB}}|$的最小值是$\frac{{\sqrt{3}}}{2}$,则|AB|=1或$\sqrt{3}$,此时λ=$±\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=ax+1-2(a>0且a≠1)的图象恒过定点A,设抛物线E:y2=4x上任意一点M.到准线l的距离为d,则d+|MA|的最小值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知F是抛物线y2=4x的焦点,A、B是该抛物线上的点,|AF|+|BF|=5,则 线段AB的中点的横坐标为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,在△ABC中,点E为AB边的中点,点F在AC边上,且CF=2FA,BF交CE于点M,设$\overrightarrow{AM}$=x$\overrightarrow{AE}$+y$\overrightarrow{AF}$,则x+y=$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p:?x∈R,使$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$=2,命题q:a=2是函数y=x2-ax+3在区间[1,+∞)递增的充分但不必要条件.给出下列结论:①命题“p∧q”是真命题;
②命题“¬p∧q”是真命题;
③命题“¬p∨q”是真命题;
④命题“p∨¬q”是假命题
其中正确说法的序号是(  )
A.②④B.②③C.②③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=2sin(180°-x)+cos(-x)-sin(450°-x)+cos(90°+x).
(1)若f(α)=$\frac{2}{3}$•α∈(0°,180°),求tanα;
(2)若f(α)=2sinα-cosα+$\frac{3}{4}$,求sinα•cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知角α的终边过点P(-8m,-6sin30°),且cosα=-$\frac{4}{5}$,则m的值为$\frac{1}{2}$,sinα=-$\frac{3}{5}$.

查看答案和解析>>

同步练习册答案