精英家教网 > 高中数学 > 题目详情
f(x)=log0.2(x2+6x+5)的单调递减区间
 
考点:复合函数的单调性
专题:函数的性质及应用
分析:令t=x2+6x+5>0,求得函数的定义域,根据f(x)=log0.2t,本题即求函数t在定义域内的增区间,再利用二次函数的性质可得结论.
解答: 解:令t=x2+6x+5=(x+3)2-4>0,求得x<-5,或 x>-1,故函数的定义域为{x|x<-5,或 x>-1},且f(x)=log0.2t,
本题即求函数t在定义域内的增区间.
再利用二次函数的性质可得t在定义域内的增区间为(-1,+∞),
故答案为:(-1,+∞).
点评:本题主要考查对数函数、二次函数的性质,复合函数的单调性,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面直角坐标系xOy中,三点(0,
3
),(
1
2
,2
2
),(1,-
3
2
)中有两个点在椭圆
x2
a2
+
y2
b2
=1(a>b>0)上,另一点在抛物线y2=2px(p>0)上.
(1)求椭圆与抛物线的方程;
(2)若直线y=k(x+1)(k≠0)交抛物线于P,Q两点.A,B分别是椭圆左,右顶点,求证:两直线AP,BQ交点在抛物线准线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+cosα=
17
13
,则sinα•cosα的值为(  )
A、
60
169
B、-
60
169
C、
60
196
D、-
60
196

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+c(a,b,c∈R)在x=-
2
3
与x=1时都取得极值.
(1)求a,b的值与函数f(x)的单调区间;
(2)若函数g(x)=f(x)-2c在区间[-1,2]内恰有两个零点,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、M三点不共线,对于平面ABM外任意一点O,若
OB
+
OM
=3
OP
-
OA
,则点P与A、B、M(  )
A、共面B、共线
C、不共面D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数F(x)=|3x-1|+ax
(Ⅰ)当a=3时,解关于x的不等式f(x)≥|x-3|;
(Ⅱ)若f(x)≥x-
1
2
在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,BC=1,AA1=
3

(1)证明:A1C⊥平面AB1C1
(2)若D是棱CC1的中点,在棱AB上是否存在一点E,使DE∥平面AB1C1
(3)求三棱锥A1-AB1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆(x-1)2+y2=4与直线x+y+1=0相交于A,B两点,则弦|AB|的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足f(x+4)=f(x-2),则f(3)的值为(  )
A、
1
2
B、0
C、3
D、9

查看答案和解析>>

同步练习册答案