精英家教网 > 高中数学 > 题目详情
17.已知sinα-2cosα=0.
(1)求$\frac{1}{sinαcosα}$的值;
(2)求4sin2α-3sinαcosα-5cos2α的值.

分析 sinα-2cosα=0,可得tanα=2,利用“1”的代换,弦化切,即可得出结论.

解答 解:∵sinα-2cosα=0,∴tanα=2.
(1)$\frac{1}{sinαcosα}$=$\frac{si{n}^{2}α+co{s}^{2}α}{sinαcosα}$=$\frac{ta{n}^{2}α+1}{tanα}$=$\frac{5}{2}$;
(2)4sin2α-3sinαcosα-5cos2α=$\frac{4si{n}^{2}α-3sinαcosα-5co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{4ta{n}^{2}α-3tanα-5}{ta{n}^{2}α+1}$=2.

点评 本题考查同角三角函数的关系,考查学生的计算能力,正确运用“1”的代换,弦化切是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在等比数列{an}中,a6=192,a8=768,求a1,q,S10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求f(x)=$\frac{{x}^{2}+a}{\sqrt{{x}^{2}+1}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.与不等式(x-2)2≥9等价的不等式为(  )
A.|x-2|≥9B.x-2≤3C.x-2≥3D.|x-2|≥3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的一条渐近线与圆x2+(y-$\sqrt{2}$)2=1至少有一个交点,则双曲线离心率的取值范围是(  )
A.(1,2)B.(1,$\sqrt{2}$]C.[$\sqrt{2}$,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1、F2是椭圆的两个焦点,过F1作斜率为1的直线与椭圆的一个交点为P,且PF2⊥x轴,则此椭圆的离心率等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$-1C.$\sqrt{2}$+1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=1+2sin(x+π)cos(x-\frac{π}{2})$,则f(x)是(  )
A.周期为π的奇函数B.周期为π的偶函数
C.周期为2π的奇函数D.周期为2π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)是一次函数,且一次项系数为正数,若f[f(x)]=4x+8,则f(x)=(  )
A.$2x+\frac{8}{3}$B.-2x-8C.2x-8D.$2x+\frac{8}{3}$或-2x-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在平面直角坐标系xoy中,椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{6}}}{3}$,直线l与x轴交于点E,与椭圆C交于A、B两点.当直线l垂直于x轴且点E为椭圆C的右焦点时,弦AB的长为$\frac{{2\sqrt{6}}}{3}$.
(1)求椭圆C的方程;
(2)若点E的坐标为$(\frac{{\sqrt{3}}}{2},0)$,点A在第一象限且横坐标为$\sqrt{3}$,
连结点A与原点O的直线交椭圆C于另一点P,求△PAB的面积.

查看答案和解析>>

同步练习册答案