【题目】下列函数中,既是奇函数又是增函数的为( )
A. B. C. D. y=ln
【答案】B
【解析】
要判断函数是否为奇函数,只要检验f(﹣x)=﹣f(x)是否成立即可;然后再根据函数单调性的定义进行判断即可.
由奇函数的性质可知,
A:y=x+1为非奇非偶函数,不符合条件;
B:y=f(x)=x|x|的定义域R,且f(﹣x)=﹣x|﹣x|=﹣x|x|=f(x),奇函数
y=x|x|=在R上单调递增,故正确;
C:y=为奇函数,但在(0,+∞),(﹣∞,0)上单调递减,不符合题意;
D:y=ln的定义域(﹣1,1),f(x)=ln==﹣f(x),为奇函数,而t===﹣1+在(﹣1,1)上单调递减,根据复合函数的单调性可知,y=ln在(﹣1,1)上单调递增,不符合
故选:B.
科目:高中数学 来源: 题型:
【题目】如图,椭圆的左、右焦点为,右顶点为,上顶点为,若, 与轴垂直,且.
(1)求椭圆方程;
(2)过点且不垂直于坐标轴的直线与椭圆交于两点,已知点,当时,求满足的直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 向量 =(Sn , 1), =(2n﹣1, ),满足条件 ∥ ,
(1)求数列{an}的通项公式,
(2)设函数f(x)=( )x , 数列{bn}满足条件b1=1,f(bn+1)= .
①求数列{bn}的通项公式,
②设cn= ,求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来城市“共享单车”的投放在我国各地迅猛发展,“共享单车”为人们出行提供了很大的便利,但也给城市的管理带来了一些困难,现某城市为了解人们对“共享单车”投放的认可度,对年龄段的人群随机抽取人进行了一次“你是否赞成投放共享单车”的问卷调查,根据调查结果得到如下统计表和各年龄段人数频率分布直方图:
组号 | 分组 | 赞成投放的人数 | 赞成投放的人数占本组的频率 |
第一组 | |||
第二组 | |||
第三组 | |||
第四组 | |||
第五组 | |||
第六组 |
()求, , 的值.
()在第四、五、六组“赞成投放共享单车”的人中,用分层抽样的方法抽取人参加“共享单车”骑车体验活动,求第四、五、六组应分别抽取的人数.
()在()中抽取的人中随机选派人作为领队,求所选派的人中第五组至少有一人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右焦点为,右顶点为,已知,其中为坐标原点, 为椭圆的离心率.
(1)求椭圆的方程;
(2)是否存在斜率为2的直线,使得当直线与椭圆有两个不同交点时,能在直线上找到一点,在椭圆上找到一点,满足?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,满足2acosB=2c﹣b.
(1)求角A;
(2)若△ABC的面积为 ,且a= ,请判断△ABC的形状,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com