精英家教网 > 高中数学 > 题目详情
6.四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$且|$\overrightarrow{AD}$-$\overrightarrow{AB}$|=|$\overrightarrow{AD}$+$\overrightarrow{AB}$|,则ABCD为(  )
A.平行四边形B.菱形C.矩形D.正方形

分析 由四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$,得到ABCD是平行四边形ABCD;由向量加法的几何意义以及向量模的几何意义,得到平行四边形的对角线相等,由此判断.

解答 解:因为四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$,
所以ABCD是平行四边形ABCD,
因为|$\overrightarrow{AD}$-$\overrightarrow{AB}$|=|$\overrightarrow{AD}$+$\overrightarrow{AB}$|,
所以|$\overrightarrow{BD}$|=|$\overrightarrow{AC}$|,即对角线相等,所以平行四边形ABCD是矩形;
故选C.

点评 本题考查了向量加法的几何意义以及模的几何意义;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{{a}_{n}}$=(cosnθ,sinnθ),$\overrightarrow{{b}_{n}}$=(sinnθ,cosnθ)(n∈N*,θ∈R ),则|${\overrightarrow{a}}_{n}^{2}{•\overrightarrow{b}}_{n}^{3}$|=1,动点P($\overrightarrow{{a}_{n}}$•$\overrightarrow{{b}_{n}}$,|${\overrightarrow{a}}_{n}^{2}{•\overrightarrow{b}}_{n}^{3}$|)的轨迹是线段,方程为y=1(-1≤x≤1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线$\sqrt{2}$ax+by=1(a,b是实数)与圆x2+y2=1相交于A、B两点,且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(0,1)之间的距离的最小值为$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在(1+x)6(1+y)4的展开式中,xy2项的系数是36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-ax+a2,h(x)=ax+2,定义函数g(x)=$\left\{\begin{array}{l}{f(x)(f(x)≥h(x))}\\{h(x)(f(x)<h(x))}\end{array}\right.$.
(1)当a=1时,求g(x)的解析式;
(2)当|a-3|≤1+$\sqrt{2}$时,求函数g(x)在x∈[2,4]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若不等式x2+(a-3)x+1≥0对一切x∈$({0,\frac{1}{2}}]$都成立,则a的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.满足条件{(x,y)|$\sqrt{(x-3)^{2}+{y}^{2}}$-$\sqrt{(x+3)^{2}+{y}^{2}}$=6}的点P(x,y)的轨迹是射线AP,方程为y=0(x≤-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.过点P(8,3)的直线与双曲线9x2-16y2=144相交于A,B两点,求弦AB中点的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题正确的是(  )
A.方程$\frac{x}{y-2}=1$表示斜率为1,在y轴上的截距是2的直线
B.△ABC的顶点坐标分别为A(0,3),B(-2,0),C(2,0),则中线AO的方程是x=0
C.到x轴距离为5的点的轨迹方程是y=5
D.曲线2x2-3y2-2x+m=0通过原点的充要条件是m=0

查看答案和解析>>

同步练习册答案