分析 (1)根据正切函数的定义,令3x-$\frac{π}{4}$≠kπ+$\frac{π}{2}$求出x的取值范围即可;
(2)由图象求出函数的解析式,再计算f(0)的值.
解答 解:(1)∵f(x)=tan(3x-$\frac{π}{4}$),
∴3x-$\frac{π}{4}$≠kπ+$\frac{π}{2}$,k∈Z;
解得x≠$\frac{kπ}{3}$+$\frac{π}{4}$,k∈Z;
故函数f(x)=tan(3x-$\frac{π}{4}$)的定义域为{x|x≠$\frac{kπ}{3}$+$\frac{π}{4}$,k∈Z};
(2)由图可知,A=$\sqrt{2}$,$\frac{T}{4}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,
∴T=π,又T=$\frac{2π}{ω}$(ω>0),
∴ω=2.
又函数图象经过点($\frac{π}{3}$,0),
∴2×$\frac{π}{3}$+φ=2kπ+π,
∴φ=2kπ+$\frac{π}{3}$(k∈Z),
∴函数的解析式为:f(x)=$\sqrt{2}$sin(2x+$\frac{π}{3}$),
∴f(0)=$\sqrt{2}$sin$\frac{π}{3}$=$\frac{\sqrt{6}}{2}$.
点评 本题考查了三角函数的定义、图象与性质的应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{2}$ | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {-1,0} | B. | {0,1} | C. | {-1,1} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{7}$ | B. | 3 | C. | $\sqrt{5}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com