精英家教网 > 高中数学 > 题目详情

给定直线动圆M与定圆外切且与直线相切.

(1)求动圆圆心M的轨迹C的方程;

(2)设A、B是曲线C上两动点(异于坐标原点O),若求证直线AB过一定点,并求出定点的坐标.

 

【答案】

(1)(2)

【解析】

试题分析:解:(1)由已知可得:定圆的圆心为(-3,0),且M到(-3,0)的距离比它到直线的距离大1,∴M到(-3,0)的距离等于它到直线的距离,

∴动圆圆心M的轨迹为以F(-3,0)为焦点,直线为准线的抛物线,开口向左,

, ∴动圆圆心M的轨迹C的方程为:

(也可以用直接法:,然后化简即得:);

(2)方法一:经分析:OA,OB的斜率都存在,都不为0,设OA:,则OB:

联立的方程求得A(),同理可得B(),

, 即: ,

,则,∴,∴直线AB与x轴交点为定点,

其坐标为。方法二:当AB垂直x轴时,设A,则B

,∴

此时AB与x轴的交点为

当AB不垂直x轴时,设AB:,联立有:

,∴

,即:

∴AB:,此时直线AB与x轴交点为定点,其坐标为,

综上:直线AB与x轴交点为定点,其坐标为

考点:抛物线的方程;

点评:对于题目涉及到关于直线和其他曲线的交点时,一般都可以用到跟与系数的关系式:在一元二次方程中,

 

练习册系列答案
相关习题

科目:高中数学 来源:2010年北京市海淀区高三第二次模拟考试数学(文) 题型:解答题

(本小题满分13分)

给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为.

(I)求椭圆的方程和其“准圆”方程;

(II )点P是椭圆C的“准圆”上的一个动点,过点P作直线,使得与椭圆C都只有一个交点,且分别交其“准圆”于点MN .

(1)当P为“准圆”与轴正半轴的交点时,求的方程;

(2)求证:|MN|为定值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)

给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到的距离为

(Ⅰ)求椭圆的方程和其“准圆”方程;

(Ⅱ)点P是椭圆C的“准圆”上的一个动点,过点P作直线,使得与椭圆C都只有一个交点,且分别交其“准圆”于点M,N

(1)当P为“准圆”与轴正半轴的交点时,求的方程;

(2)求证:|MN|为定值.

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)

给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到的距离为

(Ⅰ)求椭圆的方程和其“准圆”方程;

(Ⅱ)点P是椭圆C的“准圆”上的一个动点,过点P作直线,使得与椭圆C都只有一个交点,且分别交其“准圆”于点M,N

(1)当P为“准圆”与轴正半轴的交点时,求的方程;

(2)求证:|MN|为定值.

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到的距离为

(Ⅰ)求椭圆的方程和其“准圆”方程;

(Ⅱ)点P是椭圆C的“准圆”上的一个动点,过点P作直线,使得与椭圆C都只有一个交点,且分别交其“准圆”于点MN

(1)当P为“准圆”与轴正半轴的交点时,求的方程;

(2)求证:|MN|为定值.

查看答案和解析>>

同步练习册答案