精英家教网 > 高中数学 > 题目详情
16.已知:函数f(x)=2$\sqrt{3}{sin^2}$x+sin2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的单调递增区间;
(Ⅲ)把函数y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移$\frac{π}{3}$个单位,得到函数y=g(x)的图象,求$g(\frac{π}{6})$的值.

分析 (Ⅰ)利用三角函数恒等变换的应用化简函数解析式为f(x)=$2sin(2x-\frac{π}{3})+\sqrt{3}$,进而利用周期公式即可计算得解.
(Ⅱ)由$2kπ-\frac{π}{2}≤2x-\frac{π}{3}≤2kπ+\frac{π}{2}$(k∈Z),即可解得f(x)的单调递增区间.
(Ⅲ)利用函数y=Asin(ωx+φ)的图象变换的规律可求$g(x)=2sinx+\sqrt{3}$,进而利用特殊角的三角函数值即可计算得解.

解答 (本题满分为13分)
解:$f(x)=2\sqrt{3}{sin^2}x+sin2x$=$\sqrt{3}(1-cos2x)+sin2x$
=$sin2x-\sqrt{3}cos2x+\sqrt{3}$=$2sin(2x-\frac{π}{3})+\sqrt{3}$,…(3分)
(Ⅰ)$T=\frac{2π}{2}=π$;                                                  …(5分)
(Ⅱ)由$2kπ-\frac{π}{2}≤2x-\frac{π}{3}≤2kπ+\frac{π}{2}$(k∈Z),得$kπ-\frac{π}{12}≤x≤kπ+\frac{5π}{12}$(k∈Z),
则f(x)的单调递增区间是$[kπ-\frac{π}{12},kπ+\frac{5π}{12}]$(k∈Z);                    …(8分)
(Ⅲ)函数y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数$y=2sin(x-\frac{π}{3})+\sqrt{3}$的图象,
再把得到的图象向左平移$\frac{π}{3}$个单位得到函数$y=2sinx+\sqrt{3}$的图象,即$g(x)=2sinx+\sqrt{3}$,
则$g(\frac{π}{6})=2sin\frac{π}{6}+\sqrt{3}=\sqrt{3}+1$.                  …(13分)

点评 本题主要考查了三角函数恒等变换的应用,周期公式,函数y=Asin(ωx+φ)的图象变换的规律,特殊角的三角函数值以及正弦函数的图象和性质,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=6lnx+\frac{1}{2}{x^2}-5x$
(Ⅰ)求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A(-1,1,2)、B(1,0,-1),设D在直线AB上,且$\overrightarrow{AD}$=2$\overrightarrow{DB}$,设C(λ,$\frac{1}{3}$+λ,1+λ),若CD⊥AB,则λ的值为(  )
A.$\frac{11}{6}$B.-$\frac{11}{6}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=ln($\sqrt{{x}^{2}+1}$+x),若实数a,b满足f(a+2)+f(b)=0,则a+b等于

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=log32,b=log2$\frac{1}{8}$,c=$\sqrt{2}$,则(  )
A.a>b>cB.c>b>aC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线y=-x+1与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相交于A、B两点.且OA⊥OB(其中O为坐标原点).
(1)若椭圆的离心率为$\frac{\sqrt{3}}{3}$,求椭圆的标准方程;
(2)求证:不论a,b如何变化,椭圆恒过定点P;
(3)若直线l:y=ax+m过(2)中的定点P,且椭圆的离心率e∈[$\sqrt{\frac{6}{7}}$,$\sqrt{\frac{16}{17}}$],求原点到直线l距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别是F1,F2,点F2到直线x+$\sqrt{3}$y=0的距离为$\frac{1}{2}$,若点P在椭圆E上,△F1PF2的周长为6.
(1)求椭圆E的方程;
(2)若过F1的直线l与椭圆E交于不同的两点M,N,求△F2MN的内切圆的半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知四棱锥P-ABCD,其三视图和直观图如图所示,E为BC中点.
(Ⅰ)求此几何体的体积;
(Ⅱ)求证:平面PAE⊥平面PDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点.
(1)求证:平面EFG∥平面PMA;
(2)求证:平面EFG⊥平面PDC.

查看答案和解析>>

同步练习册答案