精英家教网 > 高中数学 > 题目详情
甲、乙两队各3名同学参加世博知识竞赛,每人回答一个问题,答对得1分,答错得0分.假设甲队每人答对的概率均为
2
3
,乙队中3人答对的概率分别为
2
3
2
3
1
2
.且每个人回答正确与否互不影响,用ξ表示甲队的总分.
(1)求ξ的分布列及期望;
(2)记事件A“甲乙两队总分之和等于3”,事件B“甲队总分大于乙队总分”,求P(AB).
(1)甲队中的3人答题可看做3次独立重复试验.
事件A:甲队一人答题答对,
则P(A)=
2
3

又答对得1分,答错得0分,
∴甲队的总分ξ~(3,
2
3
),
∴P(ξ=0)=
C03
(
2
3
)0?(
1
3
)3=
1
27
,P(ξ=1)=
C13
(
2
3
)?(
1
3
)2
=
2
9

P(ξ=2)=
C23
(
2
3
)2(
1
3
)=
4
9
,P(ξ=3)=
C33
(
2
3
)3?(
1
3
)0=
8
27

∴分布列为

精英家教网

∴Eξ=3×
2
3
=2;    
(2)事件AB:甲乙两队得分之和为3分,且甲队得分大于乙队得分,
所以,事件AB包括甲队得3分,乙队得0分;甲队得2分,乙队得1分,
∵乙队中3人答对的概率分别为
2
3
2
3
1
2
,∴乙队中3人答错的概率分别为
1
3
1
3
1
2

∴P(AB)=
C33
(
2
3
)3×
1
3
×
1
3
×
1
2
+
C23
(
2
3
)2×
1
3
×[
2
3
×
1
3
×
1
2
+
2
3
×
1
3
×
1
2
+
1
3
×
1
3
×
1
2
]
=
14
243

所以,P(AB)=
14
243
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙两队各3名同学参加世博知识竞赛,每人回答一个问题,答对得1分,答错得0分.假设甲队每人答对的概率均为
2
3
,乙队中3人答对的概率分别为
2
3
2
3
1
2
.且每个人回答正确与否互不影响,用ξ表示甲队的总分.
(1)求ξ的分布列及期望;
(2)记事件A“甲乙两队总分之和等于3”,事件B“甲队总分大于乙队总分”,求P(AB).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两队各3名同学参加世博知识竞赛,每人回答一个问题,答对得1分,答错得0分.假设甲队每人答对的概率均为数学公式,乙队中3人答对的概率分别为数学公式数学公式数学公式.且每个人回答正确与否互不影响,用ξ表示甲队的总分.
(1)求ξ的分布列及期望;
(2)记事件A“甲乙两队总分之和等于3”,事件B“甲队总分大于乙队总分”,求P(AB).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年内蒙古包头33中高二(上)期末数学试卷(理科)(解析版) 题型:解答题

甲、乙两队各3名同学参加世博知识竞赛,每人回答一个问题,答对得1分,答错得0分.假设甲队每人答对的概率均为,乙队中3人答对的概率分别为.且每个人回答正确与否互不影响,用ξ表示甲队的总分.
(1)求ξ的分布列及期望;
(2)记事件A“甲乙两队总分之和等于3”,事件B“甲队总分大于乙队总分”,求P(AB).

查看答案和解析>>

同步练习册答案