分析 由已知求出A的坐标,代入mx+ny+1=0,得到3m+n=1.则$\frac{1}{m}+\frac{3}{n}$=($\frac{1}{m}+\frac{3}{n}$)(3m+n),展开后利用基本不等式求最值.
解答 解:由x+4=1,得x=-3,
∴函数y=loga(x+4)-1(a>0,且a≠1)的图象恒过定点A(-3,-1),
则-3m-n+1=0,即3m+n=1.
∴$\frac{1}{m}+\frac{3}{n}$=($\frac{1}{m}+\frac{3}{n}$)(3m+n)=6+$\frac{n}{m}+\frac{9m}{n}$$≥6+2\sqrt{\frac{n}{m}•\frac{9m}{n}}=12$.
当且仅当3m=n,即m=$\frac{1}{6},n=\frac{1}{2}$时等号成立.
故答案为:12.
点评 本题考查函数恒过定点问题,考查了利用基本不等式求最值,关键是对1的灵活运用,是基础题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{5}{3}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?x0∉R,使得$x_0^2>4$ | B. | ?x0∉R,使得$x_0^2≤4$ | ||
C. | ?x∈R,x2>4 | D. | ?x∈R,x2≤4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|x≥0} | B. | {x|x≤0} | C. | {x|x>0} | D. | {x|x<0} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 在正三棱锥中,斜高大于侧棱 | |
B. | 有一条侧棱垂直于底面的棱柱是直棱柱 | |
C. | 底面是正方形的棱锥是正四棱锥 | |
D. | 有一个面是多边形,其余各面均为三角形的几何体是棱锥 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com