精英家教网 > 高中数学 > 题目详情

【题目】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:

则下面结论中不正确的是

A. 新农村建设后,种植收入减少

B. 新农村建设后,其他收入增加了一倍以上

C. 新农村建设后,养殖收入增加了一倍

D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半

【答案】A

【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.

详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,

则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确

新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;

新农村建设前养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;

新农村建设后,养殖收入与第三产业收入的综合占经济收入的所以超过了经济收入的一半,所以D正确

故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C经过P(4,-2)Q(13)两点,且圆心C在直线xy10上.

(1)求圆C的方程;

(2)若直线lPQ,且l与圆C交于点AB且以线段AB为直径的圆经过坐标原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求函数的最小正周期和对称轴方程;

(2)若,求的值域.

【答案】(1)对称轴为,最小正周期;(2)

【解析】

(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到,由周期公式和对称轴公式可得答案;(2)由x的范围得到,由正弦函数的性质即可得到值域.

(1)

,则

的对称轴为,最小正周期

(2)当时,

因为单调递增,在单调递减,

取最大值,在取最小值,

所以

所以

【点睛】

本题考查正弦函数图像的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.

型】解答
束】
21

【题目】已知等比数列的前项和为,公比

(1)求等比数列的通项公式;

(2)设,求的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村电费收取有以下两种方案供农户选择:

方案一:每户每月收取管理费2元,月用电量不超过30度时,每度0.5元;超过30度时,超过部分按每度0.6元收取;

方案二:不收管理费,每度0.58元.

1)求方案一收费(元)与用电量(度)间的函数关系;

2)老王家九月份按方案一交费35元,问老王家该月用电多少度?

3)老王家该月用电量在什么范围内,选择方案一比选择方案二更好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对任意xyR,总有f(x)f(y)f(xy),且当x>0时,f(x)<0f(1)=-.

(1)求证:f(x)R上的单调减函数.

(2)f(x)[3,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的参数方程为 (t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+ )+sin(2x﹣ )+2cos2x﹣1,x∈R.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[ ]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣(2m+3x+m2+20

1)若方程有实数根,求实数m的取值范围;

2)若方程两实数根分别为x1x2,且满足x12+x2231+|x1x2|,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中

①若,则函数取得极值;

②直线与函数的图像不相切;

③若(为复数集),且,则的最小值是3;

④定积分.

正确的有__________

查看答案和解析>>

同步练习册答案