分析 (1)由题意知,由抛物线与坐标轴有三个交点可知抛物线不过原点即b不等于0,然后抛物线与x轴有两个交点即令f(x)=0的根的判别式大于0即可求出b的范围;
(2)设出圆的一般式方程,根据抛物线与坐标轴的交点坐标可知:令y=0得到与f(x)=0一样的方程;令x=0得到方程有一个根是b即可求出圆的方程;
(3)将方程化成标准方程(x+1)2+y2=2,过点(-1,1)的最长弦(直径)为AB=2$\sqrt{2}$,最短弦为CD=2,即可求出四边形ACBD的面积.
解答 解:(1)令x=0,得抛物线与y轴交点是(0,b);
令f(x)=x2+2x+b=0,由题意b≠0且△>0,解得b<1且b≠0.
(2)设所求圆的一般方程为x2+y2+Dx+Ey+F=0
令y=0得x2+Dx+F=0这与x2+2x+b=0是同一个方程,故D=2,F=b.
令x=0得y2+Ey+F=0,方程有一个根为b,代入得出E=-b-1.
所以圆C的方程为x2+y2+2x-(b+1)y+b=0.
因为圆C的半径为$\sqrt{2}$,所以$\frac{{b}^{2}-2b+5}{4}$=2,
所以b=-1或3(舍去),
所以圆C的方程是x2+y2+2x-1=0;
(3)将方程化成标准方程(x+1)2+y2=2,过点(-1,1)的最长弦(直径)为AB=2$\sqrt{2}$,最短弦为CD=2,
所以四边形ACBD的面积=$\frac{1}{2}×2\sqrt{2}×2$=2$\sqrt{2}$.
点评 此题考查了圆的一般式方程,以及二次函数的性质,是一道综合性较强的试题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ∅ | B. | a>0,a≠1 | C. | 0<a≤2,a≠1 | D. | 1<a≤2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com