分析 由|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|得到以OA、OB为邻边的四边形为正方形,画出图形后数形结合得答案.
解答 解:如图,
在单位圆x2+y2=1中,由|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|,可得
四边形OBCA为正方形,
∴|$\overrightarrow{AB}$|=$\sqrt{2}|OA|=\sqrt{2}$.
故答案为:$\sqrt{2}$.
点评 本题考查平面向量在解题中的应用,考查数形结合的解题思想方法,关键是由|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|得到以OA、OB为邻边的四边形为正方形,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com