精英家教网 > 高中数学 > 题目详情
18.已知直线l与圆O:x2+y2=1交于A,B两点,且|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|,则|$\overrightarrow{AB}$|=$\sqrt{2}$.

分析 由|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|得到以OA、OB为邻边的四边形为正方形,画出图形后数形结合得答案.

解答 解:如图,

在单位圆x2+y2=1中,由|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|,可得
四边形OBCA为正方形,
∴|$\overrightarrow{AB}$|=$\sqrt{2}|OA|=\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查平面向量在解题中的应用,考查数形结合的解题思想方法,关键是由|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|得到以OA、OB为邻边的四边形为正方形,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若实数a,b,c满足2a+4b=2c,4a+2b=4c,求c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=ex,g(x)=ax2+2ax,若存在正整数x0,使得f(x0)<g(x0),则a的取值范围是a>$\frac{(\sqrt{2}-1){e}^{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,点($\sqrt{{a}_{n}},{S}_{n}$)在曲线y=2x2-2上
(1)求证:数列{an}是等比数列;
(2)设数列{bn}满足bn=an+1-an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知关于x的不等式ax2+2x+c>0的解集为($\frac{1}{3}$,$\frac{1}{2}$),求-cx2+2x-a>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2lnx-x2+ax(a∈R).
(1)设函数g(x)=f(x)+x2
①求函数g(x)的单调区间;
②求证:当a=-2时,对任意的t≤-2,存在唯一的m∈[1,+∞),使t=g(m);
(2)若函数f(x)的两个零点为x1,x2,且x1<x2,求证:f′($\frac{{x}_{1}+{x}_{2}}{2}$)<0(其中f′(x)是f(x)的导函数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.画出函数y=|x-2|的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\overrightarrow{a}$、$\overrightarrow{b}$是两个单位向量,且|k$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow{b}$|(其中k>0),
(1)$\overrightarrow{a}$与$\overrightarrow{b}$能垂直吗?
(2)若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x>0,y>0,xy=2,则$\frac{8{x}^{3}+{y}^{3}}{4{x}^{2}+{y}^{2}+8}$的最小值为1.

查看答案和解析>>

同步练习册答案