精英家教网 > 高中数学 > 题目详情
通项公式为an=
2
n(n+1)
的数列{an}的前n项和为
9
5
,则项数n为(  )
A.7B.8C.9D.10
数列{an}中,an=
2
n(n+1)
=2(
1
n
-
1
n+1
),
∴{an}的前n项和sn=2(1-
1
2
)+2(
1
2
-
1
3
)+2(
1
3
-
1
4
)+…+2(
1
n
-
1
n+1
)=2(1-
1
n+1
);
∴2(1-
1
n+1
)=
9
5

解得n=9,即项数n为9.
故选:C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设数列{an}是有穷等差数列,给出下面数表:
a1 a2a3 …an-1  an第1行
a1+a2 a2+a3 …an-1+an 第2行


…第n行
上表共有n行,其中第1行的n个数为a1,a2,a3…an,从第二行起,每行中的每一个数都等于它肩上两数之和.记表中各行的数的平均数(按自上而下的顺序)分别为b1,b2,b3…bn
(1)求证:数列b1,b2,b3…bn成等比数列;
(2)若ak=2k-1(k=1,2,…,n),求和
n
k=1
akbk

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}的前n项和Sn=2n2-3n,而a1,a3,a5,a7,组成一新数列{bn},则数列{bn}的前n项和为
(  )
A.Tn=2n2-nB.Tn=4n2+3nC.Tn=2n2-3nD.Tn=4n2-5n

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等比数列{an}的各项均为正数,且a1+2a2=1,a
23
=4a2a6
(1)求数列{an}的通项公式;
(2)设bn=log2a1+log2a2+…+log2an,求数列{
1
bn
}的前n项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:数列{an}的前n项和为Sn,且满足Sn=2an-n,(n∈N*).
(Ⅰ)求:a1,a2的值;
(Ⅱ)求:数列{an}的通项公式;
(Ⅲ)若数列{bn}的前n项和为Tn,且满足bn=nan,(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设命题p:方程x2+mx+1=0有实根,命题q:数列{
1
n(n+1)
}
的前n项和为Sn,对?n∈N*恒有m≤Sn,若p或q为真,p且q为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正项数列{an}的前n项的乘积等于Tn=(
1
4
)
n2-6n
(n∈N*),bn=log2an,则数列{bn}的前n项和Sn中最大值是(  )
A.S6B.S5C.S4D.S3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,将数以斜线作如下分群:(1),(2,3),(4,6,5),(8,12,10,7),(16,24,20,14,9),….并顺次称其为第1群,第2群,第3群,第4群,….则第7群中的第2项是:______;
13579
26101418
412202836
824405672
164880112114
第n群中n个数的和是:______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正项数列{an}中,若a1=1,且对所有n∈N*满足nan+1-(n+1)an=0,则a2014=(  )
A.1011B.1012C.2013 D.2014

查看答案和解析>>

同步练习册答案