【题目】过抛物线C:x2=4y的准线上任意一点P作抛物线的切线PA,PB,切点分别为A,B,则A点到准线的距离与B点到准线的距离之和的最小值是( )
A.7B.6C.5D.4
【答案】D
【解析】
设,A(x1,y1),B(x2,y2),利用导数的几何意义求出切线AB的方程,点P的坐标代入两切线方程即可观察求出直线AB的方程,确定直线AB恒过抛物线焦点可知距离之和为AB,数形结合知当AB为通径时取最小值2p.
设抛物线C:x2=4y的准线上任意一点.
点P作抛物线的切线PA,PB,设切点分别为A(x1,y1),B(x2,y2),
由A,B是抛物线上的点知,
x2=4y,
所以切线PA的方程为:,
切线PB方程为,
因为点在切线PA,PB上,
所以直线AB的方程为mx=2(y﹣1).
故直线AB过定点(0,1),(即AB恒过抛物线焦点),
则A点到准线的距离与B点到准线的距离之和为AB,
数形结合知当AB为通径时最小,最小值是2p=4.
故选:D.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系,点为曲线上的动点,点在线段的延长线上且满足点的轨迹为.
(1)求曲线的极坐标方程;
(2)设点的极坐标为,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(k为常数,且).
(1)在下列条件中选择一个________使数列是等比数列,说明理由;
①数列是首项为2,公比为2的等比数列;
②数列是首项为4,公差为2的等差数列;
③数列是首项为2,公差为2的等差数列的前n项和构成的数列.
(2)在(1)的条件下,当时,设,求数列的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:
等级 | 不合格 | 合格 | ||
得分 | ||||
频数 | 6 | a | 24 | b |
(1)由该题中频率分布直方图求测试成绩的平均数和中位数;
(2)其他条件不变在评定等级为“合格”的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;
(3)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系.xOy中,曲线C1的参数方程为( 为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.
(1)求曲线C1的普通方程和C2的直角坐标方程;
(2)已知曲线C2的极坐标方程为,点A是曲线C3与C1的交点,点B是曲线C3与C2的交点,且A,B均异于原点O,且|AB|=4,求α的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面四边形是菱形,点在线段上,∥平面.
(1)证明:点为线段中点;
(2)已知平面,,点到平面的距离为1,四棱锥的体积为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为,点为椭圆的左、右顶点,点是椭圆上一点,且直线的倾斜角为,,已知椭圆的离心率为.
(1)求椭圆的方程;
(2)设为椭圆上异于的两点,若直线的斜率等于直线斜率的倍,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂加工某种零件需要经过,,三道工序,且每道工序的加工都相互独立,三道工序加工合格的概率分别为,,.三道工序都合格的零件为一级品;恰有两道工序合格的零件为二级品;其它均为废品,且加工一个零件为二级品的概率为.
(1)求;
(2)若该零件的一级品每个可获利200元,二级品每个可获利100元,每个废品将使工厂损失50元,设一个零件经过三道工序加工后最终获利为元,求的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com