精英家教网 > 高中数学 > 题目详情

【题目】过抛物线Cx24y的准线上任意一点P作抛物线的切线PAPB,切点分别为AB,则A点到准线的距离与B点到准线的距离之和的最小值是(

A.7B.6C.5D.4

【答案】D

【解析】

Ax1y1),Bx2y2),利用导数的几何意义求出切线AB的方程,点P的坐标代入两切线方程即可观察求出直线AB的方程,确定直线AB恒过抛物线焦点可知距离之和为AB,数形结合知当AB为通径时取最小值2p.

设抛物线Cx24y的准线上任意一点

P作抛物线的切线PAPB,设切点分别为Ax1y1),Bx2y2),

AB是抛物线上的点知

x24y

所以切线PA的方程为:

切线PB方程为

因为点在切线PAPB上,

所以直线AB的方程为mx2y1).

故直线AB过定点(01),(即AB恒过抛物线焦点),

A点到准线的距离与B点到准线的距离之和为AB

数形结合知当AB为通径时最小,最小值是2p4

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系,点为曲线上的动点,点在线段的延长线上且满足的轨迹为.

1)求曲线的极坐标方程;

2)设点的极坐标为,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数k为常数,).

1)在下列条件中选择一个________使数列是等比数列,说明理由;

①数列是首项为2,公比为2的等比数列;

②数列是首项为4,公差为2的等差数列;

③数列是首项为2,公差为2的等差数列的前n项和构成的数列.

2)在(1)的条件下,当时,设,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定合格”“不合格两个等级,同时对相应等级进行量化:合格5分,不合格0.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:

等级

不合格

合格

得分

频数

6

a

24

b

1)由该题中频率分布直方图求测试成绩的平均数和中位数;

2)其他条件不变在评定等级为合格的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;

3)用分层抽样的方法,从评定等级为合格不合格的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系.xOy中,曲线C1的参数方程为 为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.

1)求曲线C1的普通方程和C2的直角坐标方程;

2)已知曲线C2的极坐标方程为,点A是曲线C3C1的交点,点B是曲线C3C2的交点,且AB均异于原点O,且|AB|=4,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面四边形是菱形,点在线段上,∥平面

1)证明:点为线段中点;

2)已知平面,点到平面的距离为1,四棱锥的体积为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处的切线l过点,求实数的值;

2)若函数有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,点为椭圆的左、右顶点,点是椭圆上一点,且直线的倾斜角为,已知椭圆的离心率为.

1)求椭圆的方程;

2)设为椭圆上异于的两点,若直线的斜率等于直线斜率的倍,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂加工某种零件需要经过三道工序,且每道工序的加工都相互独立,三道工序加工合格的概率分别为.三道工序都合格的零件为一级品;恰有两道工序合格的零件为二级品;其它均为废品,且加工一个零件为二级品的概率为.

1)求

2)若该零件的一级品每个可获利200元,二级品每个可获利100元,每个废品将使工厂损失50元,设一个零件经过三道工序加工后最终获利为元,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案