精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),直线与曲线交于两点.

(Ⅰ)求的长;

(Ⅱ)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.

【答案】(1);(2)1。

【解析】分析(Ⅰ)化直线的参数方程为普通方程,和曲线方程联立后利用根与系数的关系写出两个交点的横坐标的和与积,利用弦长公式求的长;(Ⅱ)由极坐标与直角坐标互化公式得点P的直角坐标为,所以点在直线上,中点对应参数为,由参数的几何意义可得结果.

详解(Ⅰ)直线的参数方程的标准形式为为参数),代入曲线C的方程得.

设点A,B对应的参数分别为,则,所以.

(Ⅱ)由极坐标与直角坐标互化公式得点P的直角坐标为,所以点在直线上,中点对应参数为,由参数的几何意义,所以点到线段中点的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校参加某项竞赛仅有一个名额,结合平时训练成绩,甲、乙两名学生进入最后选拔,学校为此设计了如下选拔方案:设计6道测试题,若这6道题中,甲能正确解答其中的4道,乙能正确解答每个题目的概率均为.假设甲、乙两名学生解答每道测试题都相互独立,互不影响,现甲、乙从这6道测试题中分别随机抽取3题进行解答.

(1)求甲、乙两名学生共答对2道测试题的概率;

(2)从数学期望和方差的角度分析,应选拔哪个学生代表学校参加竞赛?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的短轴一个端点到右焦点F的距离为2,且过点
(1)求椭圆C的方程;
(2)设M,N为椭圆C上不同的两点,A,B分别为椭圆C上的左右顶点,直线MN既不平行与坐标轴,也不过椭圆C的右焦点F,若∠AFM=∠BFN,求证:直线MN过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最小值为60°;
其中正确的是(填写所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的方程在区间上有两个实数根,且,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现在,很多人都喜欢骑“共享单车”,但也有很多市民并不认可.为了调查人们对这种交通方式的认可度,某同学从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20名市民,得到了一个市民是否认可的样本,具体数据如下列联表

附:

根据表中的数据,下列说法中,正确的是(

A. 没有95% 以上的把握认为“是否认可与城市的拥堵情况有关”

B. 有99% 以上的把握认为“是否认可与城市的拥堵情况有关”

C. 可以在犯错误的概率不超过0.01的前提下认为“是否认可与城市的拥堵情况有关”

D. 可以在犯错误的概率不超过0.025的前提下认为“是否认可与城市的拥堵情况有关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,齐王获胜的概率是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案