精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 为f(x)的零点,x= 为y=f(x)图象的对称轴,且f(x)在( )上单调,则ω的最大值为(
A.11
B.9
C.7
D.5

【答案】B
【解析】解:∵x=﹣ 为f(x)的零点,x= 为y=f(x)图象的对称轴, ∴ ,即 ,(n∈N)
即ω=2n+1,(n∈N)
即ω为正奇数,
∵f(x)在( )上单调,则 =
即T= ,解得:ω≤12,
当ω=11时,﹣ +φ=kπ,k∈Z,
∵|φ|≤
∴φ=﹣
此时f(x)在( )不单调,不满足题意;
当ω=9时,﹣ +φ=kπ,k∈Z,
∵|φ|≤
∴φ=
此时f(x)在( )单调,满足题意;
故ω的最大值为9,
故选:B
根据已知可得ω为正奇数,且ω≤12,结合x=﹣ 为f(x)的零点,x= 为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在( )上单调,可得ω的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0),过其焦点F的直线l交抛物线C于点A、B,|AF|=3|BF|,则|AB|=(
A.p
B.
C.2p
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,图象过定点(0,1)的是( )
A.y=2x
B.y=log2x
C.
D.y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正项数列{an}的前n项和为Sn , 满足an=2 ﹣1.若对任意的正整数p、q(p≠q),不等式SP+Sq>kSp+q恒成立,则实数k的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1=λan+2n(n∈N* , λ∈R),且a1=2.
(1)若λ=1,求数列{an}的通项公式;
(2)若λ=2,证明数列{ }是等差数列,并求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=log2 +a).
(1)当a=1时,解不等式f(x)>1;
(2)若关于x的方程f(x)+log2(x2)=0的解集中恰有一个元素,求a的值;
(3)设a>0,若对任意t∈[ ,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足 = =3.
(Ⅰ)求△ABC的面积;
(Ⅱ)若b+c=6,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=ksin(kx+φ)(k>0,|φ|< )与函数y=kx﹣k2+6的部分图象如图所示,则函数f(x)=sin(kx﹣φ)+cos(kx﹣φ)图象的一条对称轴的方程可以为(
A.x=﹣
B.x=
C.x=
D.x=﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:以点 为圆心的圆与x轴交于点O,A,与y轴交于点O、B,其中O为原点,
(1)求证:△OAB的面积为定值;
(2)设直线y=﹣2x+4与圆C交于点M,N,若OM=ON,求圆C的方程.

查看答案和解析>>

同步练习册答案