精英家教网 > 高中数学 > 题目详情
在一个盒子中,放有标号分别为1,2,3的三个小球.现从这个盒子中,有放回地先后抽得两个小球的标号分别为x,y,设O为坐标原点,M的坐标为(x-2,x-y).
(1)求||2的所有取值之和;
(2)求事件“||2取得最大值”的概率.
(1)8(2)
(1)∵x,y可能的取值为1,2,3,∴(x-2,x-y)的所有可能取值为(-1,0),(-1,-1),(-1,-2),(0,0),(0,1),(0,-1),(1,2),(1,1),(1,0),共9种.由||2=(x-2)2+(x-y)2可知||2的所有可能值为0,1,2,5.故||2的所有可能取值之和为8.
(2)由于||2取最大值5时,x,y的取值为(1,3),(3,1),共2种,故事件“||2取得最大值”的概率为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

中国男子篮球职业联赛总决赛采用七场四胜制(即先胜四场者获胜).进入总决赛的甲乙两队中,若每一场比赛甲队获胜的概率为,乙队获胜的概率为,假设每场比赛的结果互相独立.现已赛完两场,乙队以暂时领先.
(1)求甲队获得这次比赛胜利的概率;
(2)设比赛结束时两队比赛的场数为随机变量,求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

每年的3月12日,是中国的植树节.林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗的高度,规定高于128厘米的树苗为“良种树苗”,测得高度如下(单位:厘米):
甲:137,121,131,120,129,119,132,123,125,133;
乙:110,130,147,127,146,114,126,110,144,146.
(1)根据抽测结果,画出甲、乙两种树苗高度的茎叶图,并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出对两种树苗高度的统计结论;
(2)设抽测的10株甲种树苗高度平均值为,将这10株树苗的高度依次输入按程序框图进行运算(如图),问输出的S大小为多少?并说明S的统计学意义;

(3)若小王在甲种树苗中随机领取了5株进行种植,用样本的频率分布估计总体分布,求小王领取到的“良种树苗”的株数X的分布列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个袋子里装有7个球,其中有红球4个, 编号分别为1,2,3,4;白球3个,编号分别为1,2,3.从袋子中任取4个球(假设取到任何一个球的可能性相同).
(Ⅰ)求取出的4个球中, 含有编号为3的球的概率;
(Ⅱ)在取出的4个球中, 红球编号的最大值设为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校组织一次冬令营活动,有8名同学参加,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中有X名男同学.
(1)求X的分布列;
(2)求去执行任务的同学中有男有女的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设一次试验成功的概率为p,进行100次独立重复试验,当p=_______时,成功次数的标准差的值最大,其最大值为   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个袋中有3个黑球,2个白球共5个大小相同的球,每次摸出一球,放进袋里再摸第二次,则两次摸出的球都是白球的概率为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

记△ABC各边的中点分别为DEF,在ABCDEF中任取4点,若这4点为平行四边形顶点,则称为选取成功.某人连续进行3次这种选取,则至少成功1次的概率是(  ).
A.B.C.D.

查看答案和解析>>

同步练习册答案