精英家教网 > 高中数学 > 题目详情

【题目】我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵,,若,当阳马体积最大时,则堑堵的外接球的体积为________

【答案】

【解析】

ACBCAAB=2,得到“阳马”BA1ACC1体积VAC2+BC2=4,从而BC×AC4,当且仅当BCAC时取等号,从而当“阳马”BA1ACC1体积最大时,BCAC,由此能求出“堑堵 ABCA1B1C1的外接球的半径,进而求得体积

∵“堑堵”ACBCAAB=2,

∴“阳马”BA1ACC1体积V

ACBCAAB=2,∴AC2+BC2=4,

BC×AC4,

当且仅当BCAC时取等号,

∴当“阳马”BA1ACC1体积最大时,BCAC,∴堑堵的底面是直角三角形,

堑堵ABCA1B1C1的外接球的球心在面的中心处,

∴外接球的半径设为R,则R=

∴V= =

故答案为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】欧拉公式为虚数单位,为自然底数)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数在复平面中位于( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学是研究数量、结构、变化、空间以及信息等概念的一门科学.在人类历史发展和社会生活中,数学发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具.

1)为调查大学生喜欢数学命题是否与性别有关,随机选取名大学生进行问卷调查,当被调查者问卷评分不低于分则认为其喜欢数学命题,当评分低于分则认为其不喜欢数学命题,问卷评分的茎叶图如下:

依据上述数据制成如下列联表:

请问是否有的把握认为大学生是否喜欢数学命题与性别有关?

参考公式及数据:.

2)在某次命题大赛中,同学要进行轮命题,其在每轮命题成功的概率均为,各轮命题相互独立,若该同学在轮命题中恰有次成功的概率为,记该同学在轮命题中的成功次数为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形 的四个顶点在椭圆 上,对角线所在直线的斜率为,且 .

(1)当点为椭圆的上顶点时,求所在直线方程;

(2)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)在中,角所对的边分别为,已知

1)求的值;

2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,四边形为等腰梯形, ,四边形为正方形,平面平面.

(Ⅰ)若点是棱的中点,求证: ∥平面

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)在线段上是否存在点,使平面平面?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点,点分别为线段上的动点,且满足.

1)若,求点的坐标;

2)设点的坐标为,求的外接圆的一般方程,并求的外接圆所过定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游爱好者计划从3个亚洲国家A1A2A33个欧洲国家B1B2B3中选择2个国家去旅游.

(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;

(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用五点法画函数在某一个周期内的图象时,列出了如表并给出了部分数据:

0

π

x

0

2

0

0

1)请根据上表数据,写出函数的解析式;(直接写出结果即可)

2)求函数的单调递增区间;

3)设,已知函数在区间上的最大值是img src="http://thumb.zyjl.cn/questionBank/Upload/2020/11/26/20/139c9676/SYS202011262014544768390673_ST/SYS202011262014544768390673_ST.013.png" width="24" height="24" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,求t的值以及函数在区间[上的最小值.

查看答案和解析>>

同步练习册答案