(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.
已知抛物线,F是焦点,直线l是经过点F的任意直线.
(1)若直线l与抛物线交于两点A、B,且(O是坐标原点,M是垂足),求动点M的轨迹方程;
(2)若C、D两点在抛物线上,且满足,求证直线CD必过定点,并求出定点的坐标.
所求动点M的轨迹方程是().
直线CD的方程可化为. 直线CD恒过定点,且定点坐标为(2,0).
【解析】(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.
解 (1) 设动点M的坐标为. …………………1分
∵抛物线的焦点是,直线l恒过点F,且与抛物线交于两点A、B,
又,
∴. …………………3分
∴,化简,得. …………………5分
又当M与原点重合时,直线l与x轴重合,故.
∴所求动点M的轨迹方程是().
(2) 设点C、D的坐标为、. …………………………6分
∵C、D在抛物线上,
∴,,即,.
又,
∴. ………8分
∵点C、D的坐标为、,
∴直线CD的一个法向量是,可得直线CD的方程为:
,化简,得
,进一步用,有
.
又抛物线上任两点的纵坐标都不相等,即.
∴直线CD的方程可化为. ………………………10分
∴直线CD恒过定点,且定点坐标为(2,0). ………………………12分
科目:高中数学 来源:2011届陕西省师大附中、西工大附中高三第五次联考理数 题型:解答题
.三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤.
16. (本题满分12分)
已知函数为偶函数, 且
(1)求的值;
(2)若为三角形的一个内角,求满足的的值.
查看答案和解析>>
科目:高中数学 来源:2014届湖北省高二上学期期中考试理科数学试卷(解析版) 题型:解答题
(本题满分12分)某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段: ,,…, 后得到如下频率分布直方图.
(Ⅰ)求分数在内的频率;
(Ⅱ)用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,将该样 本看成一个总体,从中任意选取2人, 求其中恰有1人的分数不低于90分的概率.
查看答案和解析>>
科目:高中数学 来源:2014届吉林长春外国语学校高一下学期第二次月考数学试卷(解析版) 题型:解答题
(本题满分12分)
本公司计划2012年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
查看答案和解析>>
科目:高中数学 来源:2010-2011学年陕西省、西工大附中高三第五次联考理数 题型:解答题
.三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤.
16. (本题满分12分)
已知函数为偶函数, 且
(1)求的值;
(2)若为三角形的一个内角,求满足的的值.
查看答案和解析>>
科目:高中数学 来源:2010-2011年上海市高二第一学期期末考试数学试卷 题型:解答题
(本小题满分12分)
如图,长方体中, AD=2,AB=AD=4,,点E是AB的中点,点F是的中点。
(1)求证:;
(2)求异面直线与所成的角的大小;
(本题满分12分)
已知,且以下命题都为真命题:
命题 实系数一元二次方程的两根都是虚数;
命题 存在复数同时满足且.
求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com