精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若曲线处切线的斜率为,判断函数的单调性;

2)若函数有两个零点,求a的取值范围.

【答案】1)答案见解析;(2.

【解析】

1)对求导,根据导数的几何意义代入,可求得切线的斜率,进而可得a的值;分别判断当时,的正负,即可判断的单调性;

2)当时,由,分别求出时,的单调性,并求出极值个数;当时,由,判断的单调性,可得,又时,时,,综合分析,即可得答案.

1)由题

,得

此时,由.

时,为增函数;时,为增函数,且,所以R上的增函数.

2)①当时,由

,由(1)知,R上的增函数.

所以只有一个零点,不符合题意.

,则时,为增函数;时,为减函数;时,为增函数.

,故最多只有一个零点,不符合题意.

时,则时,为增函数;时,为减函数;时,为增函数.

,故最多只有一个零点,不符合题意.

②当时,由

为减函数,由为增函数,

.,

所以当时,始终有两个零点.

综上所述,a的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】十九大提出:坚决打赢脱贫攻坚战,做到精准扶贫.某县积极引导农民种植一种名贵中药材,从而大大提升了该县村民的经济收入.2019年年底,该机构从该县种植的这种名贵药材的农户中随机抽取了100户,统计了他们2019年因种植,中药材所获纯利润(单位:万元)的情况(假定农户因种植中药材这一项一年最多获利11万元),统计结果如下表所示:

1)由表可以认为,该县农户种植中药材所获纯利润Z(单位:万元)近似地服从正态分布,其中近似为样本平均数(每组数据取区间的中点值)近似为样本方差.若该县有1万户农户种植了该中药材,试估算所获纯利润Z在区间(1.98.2)的户数;

2)为答谢广大农户的积极参与,该调查机构针对参与调查的农户举行了抽奖活动,抽奖规则如下:在一箱子中放置5个除颜色外完全相同的小球,其中红球1个,黑球4.让农户从箱子中随机取出一个小球,若取到红球,则抽奖结束;若取到黑球,则将黑球放回箱中,让他继续取球,直到取到红球为止(取球次数不超过10).若农户取到红球,则视为中奖,获得2000元的奖励,若一直未取到红球,则视为不中奖.现农户张明参加了抽奖活动,记他中奖时取球的次数为随机变量X,他取球的次数为随机变量Y.

①证明:为等比数列;

②求Y的数学期望.(精确到0.001)

参考数据:.若随机变量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校课外兴趣小组利用假期到植物园开展社会实践活动,研究某种植物生长情况与温度的关系.现收集了该种植物月生长量ycm)与月平均气温x(℃)的8组数据,并制成如图所示的散点图.

根据收集到的数据,计算得到如下值:

18

12.325

224.04

235.96

1)求出y关于x的线性回归方程(最终结果的系数精确到0.01),并求温度为28℃时月生长量y的预报值;

2)根据y关于x的回归方程,得到残差图如图所示,分析该回归方程的拟合效果.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车又称为小黄车,近年来逐渐走进了人们的生活,也成为减少空气污染,缓解城市交通压力的一种重要手段.为调查某地区居民对共享单车的使用情况,从该地区居民中按年龄用随机抽样的方式随机抽取了人进行问卷调查,得到这人对共享单车的评价得分统计填入茎叶图,如下所示(满分分):

1)找出居民问卷得分的众数和中位数;

2)请计算这位居民问卷的平均得分;

3)若在成绩为分的居民中随机抽取人,求恰有人成绩超过分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,①已知点,直线,动点满足到点的距离与到直线的距离之比为;②已知圆的方程为,直线为圆的切线,记点到直线的距离分别为,动点满足;③点分别在轴,轴上运动,且,动点满足

1)在①,②,③这三个条件中任选一个,求动点的轨迹方程;

2)记(1)中的轨迹为,经过点的直线两点,若线段的垂直平分线与轴相交于点,求点纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆,点是抛物线的焦点,过点F作直线交抛物线于MN两点,延长分别交椭圆于AB两点,记的面积分别是.

(1)求的值及抛物线的准线方程;

(2)求的最小值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右两个焦点为,抛物线与椭圆有公共焦点.且两曲线在第一象限的交点的横坐标为.

1)求椭圆和抛物线的方程;

2)直线与抛物线的交点为为坐标原点),与椭圆的交点为在线段上),且.问满足条件的直线有几条,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线处的切线方程,并证明:.

2)当时,方程有两个不同的实数根,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面为直角梯形,分别为的中点.

1)求证:平面

2)若截面与底面所成锐二面角为,求的长度.

查看答案和解析>>

同步练习册答案