【题目】已知函数f(x)= ,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围.
【答案】⑴y="6x-9(2)" 0<a<5
【解析】试题分析:(1)利用导数求切线斜率即可;
(2)在区间上, 恒成立恒成立,令,解得或,以下分两种情况, 讨论,分类求出函数最大值即可.
试题解析:(1)当a=1时,f(x)=x3-x2+1,f(2)=3;f' (x)=3x2-3x, f' (2)=6.
所以曲线y=f(x) 在点(2,f(2))处的切线方程y-3=6(x-2),即y=6x-9.
(2)f' (x)=3ax2-3x=3x(ax-1),令f' (x)=0,解得x=0或x=.
以下分两种情况讨论:
①若0<a≤2,则≥,当x变化时,f' (x),f(x)的变化情况如下表:
x | (-,0) | 0 | (0,) |
f' (x) | + | 0 | - |
f(x) | 递增 | 极大值 | 递减 |
当x[-,]上,f(x)>0等价于,即解不等式组得-5<a<5.因此0<a≤2.
②若a>2,则0<<,当x变化时,f' (x),f(x)的变化情况如下表:
X | (-,0) | 0 | (0,) | (,) | |
f' (x) | + | 0 | - | 0 | + |
f'(x) | 递增 | 极大值 | 递减 | 极小值 | 递增 |
当x[-,]上,f(x)>0等价于,即解不等式组得<a<5,或a<-.因此2<a<5. 综合①和②,可知a的取值范围为0<a<5.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项均为正数,记数列{an}的前n项和为Sn,数列{an2}的前n项和为Tn,且3Tn=Sn2+2Sn,n∈N*.
(Ⅰ)求a1的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若k,t∈N*,且S1,Sk-S1,St-Sk成等比数列,求k和t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将边长为2的正六边形ABCDEF沿对角线BE翻折,连接AC、FD,形成如图所示的多面体,且,(1)证明:平面ABEF平面BCDE; (2)求DE与平面ABC所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, .
(1)当时,求函数的最小值;
(2)当时,讨论函数的单调性;
(3)是否存在实数,对任意的, ,且,有恒成立,若存在求出的取值范围,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知(x+ )n展开式的二项式系数之和为256
(1)求n;
(2)若展开式中常数项为 ,求m的值;
(3)若展开式中系数最大项只有第6项和第7项,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:“存在 ”,命题q:“曲线 表示焦点在x轴上的椭圆”,命题s:“曲线 表示双曲线”
(1)若“p且q”是真命题,求m的取值范围;
(2)若q是s的必要不充分条件,求t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com