如图所示,已知PA与⊙O相切,A为切点,PBC为割线,CD∥AP,AD与BC相交于点E,F为CE上一点,且DE2=EF·EC.
(1)求证:∠P=∠EDF;
(2)求证:CE·EB=EF·EP;
(3)若CE∶BE=3∶2,DE=6,EF=4,求PA的长.
(1) (2)见解析 (3)
解析(1)证明 ∵DE2=EF·EC,∴DE∶CE=EF∶ED.
∵∠DEF是公共角,∴△DEF∽△CED.
∴∠EDF=∠C.
∵CD∥AP,∴∠C=∠P.
∴∠P=∠EDF.
(2)证明 ∵∠P=∠EDF,∠DEF=∠PEA,
∴△DEF∽△PEA.
∴DE∶PE=EF∶EA.即EF·EP=DE·EA.
∵AD、BC相交于点E,
∴DE·EA=CE·EB.∴CE·EB=EF·EP.
(3)解 ∵DE2=EF·EC,DE=6,EF=4,∴EC=9.
∵CE∶BE=3∶2,∴BE=6.
∵CE·EB=EF·EP,∴9×6=4×EP.
解得:EP=.
∴PB=PE-BE=,PC=PE+EC=.
由切割线定理得:PA2=PB·PC,
∴PA2=×,
∴PA=.
科目:高中数学 来源: 题型:解答题
如图,在正△ABC中,点D,E分别在边BC,AC上,且BD=BC,CE=CA,AD,BE相交于点P,求证:
(1)P,D,C,E四点共圆;
(2)AP⊥CP.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,PA、PB是圆O的两条切线,A、B是切点,C是劣弧AB(不包括端点)上一点,直线PC交圆O于另一点D,Q在弦CD上,且求证:
(1);(2)∽
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,CD为Rt△ABC斜边AB边上的中线,CE⊥CD,CE=,连接DE交BC于点F,AC=4,BC=3.求证:
(1)△ABC∽△EDC;
(2)DF=EF.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连结EC、CD.
(Ⅰ)求证:直线AB是⊙O的切线;
(Ⅱ)若tan∠CED=,⊙O的半径为3,求OA的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com