精英家教网 > 高中数学 > 题目详情
(2013•湛江一模)设命题p:“若对任意x∈R,|x+1|+|x-2|>a,则a<3”;命题q:“设M为平面内任意一点,则A、B、C三点共线的充要条件是存在角α,使
MB
=sin2α•
MA
+cos2α•
MC
”,则(  )
分析:因为|x+1|+|x-2|表示x到-1与2的距离,所以|x+1|+|x-2|的最小值为3,判定出命题p为真命题,根据三点共线的充要条件判定出命题q为真命题.根据复合命题的真假与构成其简单命题的真假的关系得到¬p∧q为假命题,
解答:解:因为|x+1|+|x-2|表示x到-1与2的距离,
所以,|x+1|+|x-2|的最小值为3,
所以对任意x∈R,|x+1|+|x-2|>a,
只需要3>a即a<3,
所以命题p为真命题,
所以¬p为假命题,
因为
MB
=sin2α•
MA
+cos2α•
MC

所以
BA
=
MA
-
MB
=cos2α•(
MA
-MC
)
=cos2α•
CA

所以A、B、C三点共线,
反之,A、B、C三点共线,
所以存在λ,μ使得
MB
MA
MC
其中λ+μ=1
所以存在α使得λ=sin2α,μ=cos2α
所以存在角α,使
MB
=sin2α•
MA
+cos2α•
MC
”,
所以命题q为真命题,
所以¬p∧q为假命题,
故选C.
点评:本题考查绝对值的几何意义以及三点共线的充要条件,考查解决不等式恒成立转化为求函数的最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湛江一模)在△ABC中,∠A=
π
3
,AB=2,且△ABC的面积为
3
2
,则边AC的长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江一模)如图圆上的劣弧
CBD
所对的弦长CD=
3
,弦AB是线段CD的垂直平分线,AB=2,则线段AC的长度为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江一模)点P是圆x2+y2+2x-3=0上任意一点,则点P在第一象限的概率为
1
6
-
3
1
6
-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江一模)下列四个论述:
(1)线性回归方程y=bx+a必过点(
.
x
.
y

(2)已知命题p:“?x∈R,x2≥0“,则命题¬p是“?x0∈R,
x
2
0
<0“
(3)函数f(x)=
x2(x≥1)
x(x<1)
在实数R上是增函数;
(4)函数f(x)=sinx+
4
sinx
的最小值是4
其中,正确的是
(1)(2)(3)
(1)(2)(3)
(把所有正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江一模)已知函数f(x)=ex-1,g(x)=
x
+x
,其中e是自然对数的底,e=2.71828….
(1)证明:函数h(x)=f(x)-g(x)在区间(1,2)上有零点;
(2)求方程f(x)=g(x)根的个数,并说明理由;
(3)若数列{an}(n∈N*)满足a1=a(a>0)(a为常数),an+13=g(an),证明:存在常数M,使得对于任意n∈N*,都有an≤M.

查看答案和解析>>

同步练习册答案