精英家教网 > 高中数学 > 题目详情
函数的导数是(  )
A.B.C.D.
A

试题分析:因为,由可得,选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数的图象在点处的切线方程为
.
(1)求实数的值;
(2)设.
①若上的增函数,求实数的最大值;
②是否存在点,使得过点的直线若能与曲线围成两个封闭图形,则这两个封闭图形的面积总相等.若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数fx)定义在(0,+∞)上,f(1)=0,导函数.
(1)求的单调区间和最小值;
(2)讨论的大小关系;
(3)是否存在x0>0,使得|gx)﹣gx0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线.
(1)求曲线在点()处的切线方程;
(2)若存在使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)当时,求的极大值点;
(2)设函数的图象与函数的图象交于两点,过线段的中点做轴的垂线分别交于点,证明:在点处的切线与在点处的切线不平行.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列的前项和为,对一切正整数,点都在函数的图像上,且过点的切线的斜率为.
(1)求数列的通项公式;
(2)设,等差数列的任一项,其中中所有元素的最小数,,求的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x2-mlnx,g(x)=x2-x+a.
(1)当a=0时,f(x)≥g(x)在(1,+∞),上恒成立,求实数m的取值范围;
(2)当m=2时,若函数h(x)=f(x)-g(x)在[1,3]上恰有两个不同的零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)当时,讨论的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是常数),若对曲线上任意一点处的切线恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案