精英家教网 > 高中数学 > 题目详情
如图所示,AB为☉O直径,直线CD与☉O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.证明:

(1)∠FEB=∠CEB;
(2)EF2=AD·BC.
见解析

证明:(1)由直线CD与☉O相切,
得∠CEB=∠EAB.
由AB为☉O的直径,
得AE⊥EB,
从而∠EAB+∠EBF=;
又EF⊥AB,得
∠FEB+∠EBF=,
从而∠FEB=∠EAB.
故∠FEB=∠CEB.
(2)由BC⊥CE,EF⊥AB,
∠FEB=∠CEB,BE是公共边,
得Rt△BCE≌Rt△BFE,
所以BC=BF.
类似可证:Rt△ADE≌Rt△AFE,
得AD=AF.
又在Rt△AEB中,EF⊥AB,
故EF2=AF·BF,
所以EF2=AD·BC.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.

(1)证明:B,D,H,E四点共圆;
(2)证明:CE平分∠DEF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,DE分别为△ABCABAC的中点,直线DE交△ABC的外接圆于FG两点,若CFAB,证明:
 
(1)CDBC
(2)△BCD∽△GBD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,AB∥CD,OD2=OB·OE.

求证:AD∥CE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,求DE的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,直线与圆相切于,割线经过圆心,弦于点,则___.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,AB是☉O的直径,P是AB延长线上的一点,过P作☉O的切线,切点为C,PC=2,若∠CAP=30°,则PB=   

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,A,B是圆O上的两点,且OA⊥OB,OA=2,C为OA的中点,连接BC并延长交圆O于点D,则CD=           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,⊙O的直径AB=4,C为圆周上一点,AC=3,CD是⊙O的切线,BD⊥CD于D,则CD=      

查看答案和解析>>

同步练习册答案