精英家教网 > 高中数学 > 题目详情
设f(x)=x3-ax2-bx-c,x∈[-1,1],记y=|f(x)|的最大值为M.
(Ⅰ)当a=c=0,b=
34
时,求M的值;
(Ⅱ)当a,b,c取遍所有实数时,求M的最小值.
(以下结论可供参考:对于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,当且仅当a,b,c,d同号时取等号)
分析:(I)先求导,得f′(x)=3x2-
3
4
=3(x-
1
2
)(x+
1
2
)
,从而得出y=|f(x)|的最大值为:M=max{|f(-1)|,|f(-
1
2
)|,|f(
1
2
)|,|f(1)|}=
1
4

(II)由于4f(1)-4f(-1)=8-8b,8f(
1
2
)-8f(-
1
2
)=2-8b
,且M≥|f(1)|;M≥|f(-1)|;M≥|f(
1
8
)|;M≥|f(-
1
8
)|
利用绝对值不等式建立不等关系式,得出M≥
1
4
(-1≤x′≤1).最后结合(1)可知M的最小值.
解答:解:(I)求导可得f′(x)=3x2-
3
4
=3(x-
1
2
)(x+
1
2
)

M=max{|f(-1)|,|f(-
1
2
)|,|f(
1
2
)|,|f(1)|}=
1
4
,当x=±1,±
1
2
时取等号.
(II)∵4f(1)-4f(-1)=8-8b,8f(
1
2
)-8f(-
1
2
)=2-8b

M≥|f(1)|;M≥|f(-1)|;M≥|f(
1
8
)|;M≥|f(-
1
8
)|

24M≥4|f(1)|+4|f(-1)|+8|f(
1
2
)|+8|f(-
1
2
)|
≥|4f(1)-4f(-1)-8f(
1
2
)+8f(-
1
2
)|=6

因此,M≥
1
4
(-1≤x′≤1).
由(1)可知,当a=0,b=
3
4
,c=0时,M=
1
4
.∴f(x)min=
1
4
点评:本小题主要考查函数单调性的应用、利用导数求闭区间上函数的最值、绝对值不等式的性质等基础知识,考查运算求解能力,化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=x3-a,x∈[0,+∞),设x1>0,记曲线y=f(x)在点M(x1,f(x1))处的切线l.
(1)求l的方程;
(2)设l与x轴的交点是(x2,0),证明x2a
13

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+bx+c是[-1,1]上的增函数,且f(-
1
2
)•f(
1
2
)<0,则方程f(x)=0在[-1,1]内(  )
A、可能有3个实数根
B、可能有2个实数根
C、有唯一的实数根
D、没有实数根

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3(x∈R),若0≤θ<
π
2
时,f(m•sinθ)+f(2-m)>0恒成立,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+ax2+bx+c,又k是一个常数,已知当k<0或k>4时,f(x)-k=0只有一个实根,当0<k<4时,f(x)-k=0有三个相异实根,现给出下列命题:
(1)f(x)-4=0和f′(x)=0有且只有一个相同的实根.
(2)f(x)=0和f′(x)=0有且只有一个相同的实根.
(3)f(x)+3=0的任一实根大于f(x)-1=0的任一实根.
(4)f(x)+5=0的任一实根小于f(x)-2=0的任一实根.
其中错误命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3-
x22
-2x+a,
(1)求函数f(x)的单调递增、递减区间;
(2)若函数f(x)在区间[-1,2]上的最大值与最小值的和为5,求实数a的值.

查看答案和解析>>

同步练习册答案