精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=2cos(3x+$\frac{π}{4}$).
(1)求f(x)的单调递增区间.
(2)求f(x)的最小值及取得最小值时相应的x值.

分析 (1)余弦函数的单调递增区间为[-π+2kπ,2kπ],k∈Z,令3x+$\frac{π}{4}$∈[-π+2kπ,2kπ],k∈Z,解得x的范围,即f(x)的单调递增区间.
(2)当3x+$\frac{π}{4}$=-π+2kπ,k∈Z时,f(x)取最小值-2,解对应方程,可得相应的x值.

解答 解:(1)由3x+$\frac{π}{4}$∈[-π+2kπ,2kπ],k∈Z得:x∈[-$\frac{5}{12}$π+$\frac{2}{3}$kπ,$-\frac{1}{12}$π+$\frac{2}{3}$kπ],k∈Z,
故函数f(x)=2cos(3x+$\frac{π}{4}$)的单调递增区间为:[-$\frac{5}{12}$π+$\frac{2}{3}$kπ,$-\frac{1}{12}$π+$\frac{2}{3}$kπ],k∈Z;
(2)当3x+$\frac{π}{4}$=-π+2kπ,k∈Z时,f(x)取最小值-2,
此时x=-$\frac{5}{12}$π+$\frac{2}{3}$kπ,k∈Z.

点评 本题考查的知识点是余弦函数的图象和性质,熟练掌握余弦函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知圆C的方程为(x-1)2+(y-2)2=9,过点P(-2,4)作圆C的切线PA、PB,A、B为切点.
(1)求切线PA、PB的方程;
(2)求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在等比数列{an}中,a3=$\frac{3}{2}$,S3=$\frac{9}{2}$.
(Ⅰ)求{an}的通项公式;
(Ⅱ)记bn=log2$\frac{6}{{a}_{2n+1}}$,且{bn}为递增数列,若Cn=$\frac{1}{{{b}_{n}b}_{n+1}}$,求证:C1+C2+C3+…Cn<$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x|x-a|+2x.若存在x0∈[1,3]满足f(x)≤2x+1,求所有的实数a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)对于任意实数x满足条件f(x+2)=-$\frac{1}{f(x)}$(f(x)≠0).
(1)求证:函数f(x)是周期函数;
(2)若f(1)=-5,求f(f(5))的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a=$\frac{ln3}{3}$、b=$\frac{1}{e}$、c=ln$\sqrt{2}$,则(  )
A.a<b<cB.c<b<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=tan$\frac{x}{a}$(a∈N*)的最小正周期是aπ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设有不同的直线a,b和不同的平面α,β,γ,给出三个命题:
①若a∥α,b∥α,则a∥b
②若a∥α,a∥β,则α∥β
③若α∥β,β∥γ,则α∥γ,
其中真命题的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆的焦点是F1(-1,0)和F2(1,0),又过点(1,$\frac{3}{2}$).
(1)求椭圆的离心率;
(2)又设点P在这个椭圆上,且|PF1|-|PF2|=1,求∠F1PF2的余弦的大小.

查看答案和解析>>

同步练习册答案