【题目】已知为坐标原点,椭圆: 的左焦点是,离心率为,且上任意一点到的最短距离为.
(1)求的方程;
(2)过点的直线(不过原点)与交于两点、, 为线段的中点.
(i)证明:直线与的斜率乘积为定值;
(ii)求面积的最大值及此时的斜率.
【答案】(1);(2)(i)见解析;(ii)面积的最大值是,此时的斜率为.
【解析】试题分析:(1)由题设可以得到关于的方程组为,从而,故,所以椭圆的方程为.(2)设直线为: , , , ,联立直线的方程和椭圆的方程并消元后可以得到,利用韦达定理得到,故,从而为定值.利用弦长公式和点到直线的距离可得,令,从而,最后利用基本不等式可以得到面积的最大值为且此时也就是.
解析:(1)由题意得,解得,∴, ,∴椭圆的方程为.
(2)(i)设直线为: , , , ,由题意得,
∴,∴,即,由韦达定理得: , ,∴, ,∴,∴,∴直线与的斜率乘积为定值.
(ii)由(i)可知:
,又点到直线的距离,
∴的面积
,令,则,∴ ,当且仅当时等号成立,此时,且满足,∴面积的最大值是,此时的斜率为.
科目:高中数学 来源: 题型:
【题目】已知函数(x)=xlnx,g(x)=ax3-.
(Ⅰ)求函数(x)的单调递增区间和最小值;
(Ⅱ)若函数y= (x)与函数y =g(x)的图象在交点处存在公共切线,求实数a的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(、为常数).若函数与的图象在处相切,
(Ⅰ)求的解析式;
(Ⅱ)设函数 ,若在上的最小值为,求实数的值;
(Ⅲ)设函数,若在上恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆: 的左、右焦点分别为,上顶点为,过点与垂直的直线交轴负半轴于点,且.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若过、、三点的圆恰好与直线: 相切,求椭圆的方程;
(III)在(Ⅱ)的条件下,过右焦点作斜率为的直线与椭圆交于、两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某P2P平台需要了解该平台投资者的大致年龄分布,发现其投资者年龄大多集中在区间[20,50]岁之间,对区间[20,50]岁的人群随机抽取20人进行了一次理财习惯调查,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 人数(单位:人) |
第一组 | [20,25) | 2 |
第二组 | [25,30) | a |
第三组 | [30,35) | 5 |
第四组 | [35,40) | 4 |
第五组 | [40,45) | 3 |
第六组 | [45,50] | 2 |
(Ⅰ)求a的值并画出频率分布直方图;
(Ⅱ)在统计表的第五与第六组的5人中,随机选取2人,求这2人的年龄都小于45岁的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设 为椭圆 上任一点,, 为椭圆的焦点,,离心率为 .
(1)求椭圆的标准方程;
(2)直线 经过点 ,且与椭圆交于 , 两点,若直线 ,, 的斜率依次成等比数列,求直线 的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现鲑鱼的游速可以表示为函数y=log3(),单位是m/s,θ是表示鱼的耗氧量的单位数.
(1)当一条鲑鱼的耗氧量是900个单位时,它的游速是多少?
(2)计算一条鱼静止时耗氧量的单位数。
(3)某条鲑鱼想把游速提高1 m/s,那么它的耗氧量的单位数是原来的多少倍?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com