精英家教网 > 高中数学 > 题目详情
6.求下列函数的导数:
(1)y=$\frac{sinx}{x}$;      
(2)y=x(x2+$\frac{1}{x}$+$\frac{1}{{x}^{3}}$).

分析 根据导数的运算法则进行求导即可.

解答 解:(1)函数的导数f′(x)=$\frac{cosx•x-sinx}{x^2}$=$\frac{xcosx-sinx}{{x}^{2}}$,
(2)y=x(x2+$\frac{1}{x}$+$\frac{1}{{x}^{3}}$)=x3+1+$\frac{1}{x^2}$).
则y′=3x2-$\frac{2}{{x}^{3}}$.

点评 本题主要考查导数的计算,根据导数求导公式和运算法则是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),求直线l直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=ex-kx在区间(1,+∞)上单调递增,则实数k的取值范围是(-∞,e].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面内,可以用面积法证明下面的结论:从三角形内部任意一点,向各边引垂线,其长度分别为pa,pb,pc,且相应各边上的高分别为ha,hb,hc,则有$\frac{{p}_{a}}{{h}_{a}}+\frac{{p}_{b}}{{h}_{b}}+\frac{{p}_{c}}{{h}_{c}}$=1.
请你运用类比的方法将此结论推广到四面体中并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的向量,已知$\overrightarrow{AB}$=2$\overrightarrow{a}$+m$\overrightarrow{b}$,$\overrightarrow{CB}$=$\overrightarrow{a}$+3$\overrightarrow{b}$,若A、B、C三点共线,则m的值为:6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax3+bx2(x∈R)的图象过点P(-1,2),且在点P处的切线恰好与直线x-3y=0垂直.
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间[m,m+1]上单调递增,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若向由f(x)=|x|+2表示的曲线与直线y=3围成的三角形内随机投掷一粒黄豆,求黄豆与点(0,2)的距离小于1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是13,那么另一组数据3x1-2,3x3-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是4,117.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.△ABC中,a=$\sqrt{7}$,b=3,c=2,则∠A=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案