精英家教网 > 高中数学 > 题目详情

【题目】以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,已知曲线C的参数方程为 (t为参数)

(1)若曲线C在点(1,1)处的切线为l,求l的极坐标方程;

(2)若点A的极坐标为,且当参数t[0π]时,过点A的直线m与曲线C有两个不同的交点,试求直线m的斜率的取值范围.

【答案】(1) ; (2) .

【解析】试题分析:(1)根据极坐标与普通方程直角坐标的转化公式 即可求出切线的极坐标方程;(2)画出图象,根据数形结合,可以看出切线与割线斜率分别是最小和最大值,利用斜率坐标公式即可求出

试题解析: (1)∵,∴,点在圆上,故切线方程为

l的极坐标方程为

(2)点A的直角坐标为,设m

m与半圆 ()相切时,

,∴ (舍去).

设点B,则,故直线m的斜率的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某班50位同学周考数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100].

(1)求图中[80,90)的矩形高的值,并估计这50人周考数学的平均成绩;
(2)根据直方图求出这50人成绩的众数和中位数(精确到0.1);
(3)从成绩在[40,60)的学生中随机选取2人,求这2人成绩分别在[40,50)、[50,60)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是矩形, 分别为边 的中点, 交于点,沿将矩形折起,设 ,二面角的大小为.

(1)当时,求的值;

(2)点时,点是线段上一点,直线与平面所成角为.若,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)若数列{an}是的递增等差数列,其中的a3=5,且a1,a2,a5成等比数列,

(1)求{an}的通项公式;

(2)设bn= ,求数列{bn}的前项的和Tn

(3)是否存在自然数m,使得 <Tn对一切nN*恒成立?若存在,求出m的值;

若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了参加第二届全国数学建模竞赛,长郡中学在高二年级举办了一次选拔赛,共有60名高二学生报名参加,按照不同班级统计参赛人数,如表所示:

班级

宏志班

珍珠班

英才班

精英班

参赛人数

20

15

15

10

(Ⅰ)从这60名高二学生中随机选出2人,求这2人在同一班级的概率;

(Ⅱ)现从这60名高二学生中随机选出2人作为代表,进行大赛前的发言,设选出的2人中宏志班的学生人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现在很多人喜欢自助游,2017年孝感杨店桃花节,美丽的桃花风景和人文景观迎来众多宾客.某调查机构为了了解自助游是否与性别有关,在孝感桃花节期间,随机抽取了人,得如下所示的列联表:

赞成自助游

不赞成自助游

合计

男性

女性

合计

1若在这人中,按性别分层抽取一个容量为的样本女性应抽人,请将上面的列联表补充完整,并据此资料能否在犯错误的概率不超过前提下认为赞成自助游是与性别有关系?

2若以抽取样本的频率为概率从旅游节大量游客中随机抽取人赠送精美纪念品记这人中赞成自助游人数为的分布列和数学期望.

:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,已知a=2,b=3,cosC=
(1)求△ABC的面积;
(2)求sin(C﹣A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣2|﹣|2x﹣a|,a∈R.
(1)当a=3时,解不等式f(x)>0;
(2)当x∈(﹣∞,2)时,f(x)<0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a1=1,an+1= Sn(n=1,2,3,…).则数列{an}的通项公式为

查看答案和解析>>

同步练习册答案
关 闭