【题目】已知函数(其中, 为自然对数的底数, …).
(1)若函数仅有一个极值点,求的取值范围;
(2)证明:当时,函数有两个零点, ,且.
【答案】(1)(2)见解析
【解析】试题分析:(1)求出函数的导函数,转化不等式,再通过与的大小讨论即可求的取值范围;(2)通过的范围及的零点个数,即可确定函数恒成立的条件,通过构造函数的方法,转化成利用导函数求恒成立问题.
试题解析:(1),
由得到或 (*)
由于仅有一个极值点,
关于的方程(*)必无解,
①当时,(*)无解,符合题意,
②当时,由(*)得,故由得,
由于这两种情况都有,当时, ,于是为减函数,当时, ,于是为增函数,∴仅为的极值点,综上可得的取值范围是;
(2)由(1)当时, 为的极小值点,
又∵对于恒成立,
对于恒成立,
对于恒成立,
∴当时, 有一个零点,当时, 有另一个零点,
即,
且,(#)
所以,
下面再证明,即证,
由得,
由于为减函数,
于是只需证明,
也就是证明,
,
借助(#)代换可得,
令,
则,
∵为的减函数,且,
∴在恒成立,
于是为的减函数,即,
∴,这就证明了,综上所述, .
科目:高中数学 来源: 题型:
【题目】如图,平面ABCD⊥平面ADEF,四边形ABCD为菱形,四边形ADEF为矩形,M、N分别是EF、BC的中点,AB=2AF=2,∠CBA=60°.
(1)求证:AN⊥DM;
(2)求直线MN与平面ADEF所成的角的正切值;
(3)求三棱锥D﹣MAN的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,椭圆和抛物线交于两点,且直线恰好通过椭圆的右焦点,
(1)求椭圆的标准方程;
(2)经过的直线和椭圆交于两点,交抛物线于两点, 是抛物线的焦点,是否存在直线,使得,若存在,求出直线的方程,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,四个顶点构成的菱形的面积是4,圆过椭圆的上顶点作圆的两条切线分别与椭圆相交于两点(不同于点),直线的斜率分别为.
(1)求椭圆的方程;
(2)当变化时,①求的值;②试问直线是否过某个定点?若是,求出该定点;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系 中,直线 的参数方程为 为参数),以该直角坐标系的原点 为极点, 轴的非负半轴为极轴的极坐标系下,圆 的方程为 .
(1)求直线 的普通方程和圆 的圆心的极坐标;
(2)设直线 和圆 的交点为 、 ,求弦 的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】观察研究某种植物的生长速度与温度的关系,经过统计,得到生长速度(单位:毫米/月)与月平均气温的对比表如下:
温度 | -5 | 0 | 6 | 8 | 12 | 15 | 20 |
生长速度 | 2 | 4 | 5 | 6 | 7 | 8 | 10 |
(1)求生长速度关于温度的线性回归方程;(斜率和截距均保留为三位有效数字);
(2)利用(1)中的线性回归方程,分析气温从至时生长速度的变化情况,如果某月的平均气温是时,预测这月大约能生长多少.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量, ,函数,函数在轴上的截距我,与轴最近的最高点的坐标是.
(Ⅰ)求函数的解析式;
(Ⅱ)将函数的图象向左平移()个单位,再将图象上各点的纵坐标不变,横坐标伸长到原来的2倍,得到函数的图象,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com