精英家教网 > 高中数学 > 题目详情

【题目】已知函数(其中 为自然对数的底数, …).

(1)若函数仅有一个极值点,求的取值范围;

(2)证明:当时,函数有两个零点 ,且

【答案】(1)(2)见解析

【解析】试题分析:(1)求出函数的导函数,转化不等式,再通过的大小讨论即可求的取值范围;(2)通过的范围及的零点个数,即可确定函数恒成立的条件,通过构造函数的方法,转化成利用导函数求恒成立问题.

试题解析:(1)

得到 (*)

由于仅有一个极值点,

关于的方程(*)必无解,

①当时,(*)无解,符合题意,

②当时,由(*)得,故由

由于这两种情况都有,当时, ,于是为减函数,当时, ,于是为增函数,∴仅的极值点,综上可得的取值范围是

(2)由(1)当时, 的极小值点,

又∵对于恒成立,

对于恒成立,

对于恒成立,

∴当时, 有一个零点,当时, 有另一个零点

,(#)

所以

下面再证明,即证

由于为减函数,

于是只需证明

也就是证明

借助(#)代换可得

,

的减函数,且

恒成立,

于是的减函数,即

,这就证明了,综上所述,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,平面ABCD⊥平面ADEF,四边形ABCD为菱形,四边形ADEF为矩形,M、N分别是EF、BC的中点,AB=2AF=2,∠CBA=60°.

(1)求证:AN⊥DM;
(2)求直线MN与平面ADEF所成的角的正切值;
(3)求三棱锥D﹣MAN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆和抛物线交于两点,且直线恰好通过椭圆的右焦点

(1)求椭圆的标准方程;

(2)经过的直线和椭圆交于两点,交抛物线于两点, 是抛物线的焦点,是否存在直线,使得,若存在,求出直线的方程,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,四个顶点构成的菱形的面积是4,圆过椭圆的上顶点作圆的两条切线分别与椭圆相交于两点(不同于点),直线的斜率分别为.

(1)求椭圆的方程;

(2)当变化时,①求的值;②试问直线是否过某个定点?若是,求出该定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,直线 的参数方程为 为参数),以该直角坐标系的原点 为极点, 轴的非负半轴为极轴的极坐标系下,圆 的方程为
(1)求直线 的普通方程和圆 的圆心的极坐标;
(2)设直线 和圆 的交点为 ,求弦 的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察研究某种植物的生长速度与温度的关系,经过统计,得到生长速度(单位:毫米/月)与月平均气温的对比表如下:

温度

-5

0

6

8

12

15

20

生长速度

2

4

5

6

7

8

10

(1)求生长速度关于温度的线性回归方程;(斜率和截距均保留为三位有效数字);

(2)利用(1)中的线性回归方程,分析气温从时生长速度的变化情况,如果某月的平均气温是时,预测这月大约能生长多少.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.(的图象连续不断)

(1) 的单调区间;

(2) 时,证明:存在,使

(3) 若存在属于区间,且,使,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,函数,函数轴上的截距我,与轴最近的最高点的坐标是

(Ⅰ)求函数的解析式;

(Ⅱ)将函数的图象向左平移)个单位,再将图象上各点的纵坐标不变,横坐标伸长到原来的2倍,得到函数的图象,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有一个容积V一定的铝合金盖的圆柱形铁桶,已知单位面积铝合金的价格是铁的3倍,当总造价最少时,桶高为(
A.
B.
C.2
D.2

查看答案和解析>>

同步练习册答案