精英家教网 > 高中数学 > 题目详情

【题目】关于函数,给出以下四个命题:(1)当时,单调递减且没有最值;(2)方程一定有实数解;(3)如果方程为常数)有解,则解得个数一定是偶数;(4是偶函数且有最小值.其中假命题的序号是____________.

【答案】1)、(3

【解析】

化简函数的解析式,画出函数的图象,对四个命题逐一判断即可.

,它的图象如下图所示:

命题(1):当时,上单调递增,在上单调递减且没有最值,故本命题是假命题;

命题(2):因为直线存在斜率,所以一定有实数解,故本命题是真命题;

命题(3):,所以函数是偶函数,当有解时,若,该方程的解的个数为偶数;若时,,只有一个解,故本命题是假命题;

命题(4):由(3)可知,函数是偶函数,函数有最小值,最小值为零,故本命题是真命题.

故答案为:(1)、(3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点为圆心,1为半径的圆相切,又知C的一个焦点与P关于直线对称.

1)求双曲线C的方程;

2)设直线与双曲线C的左支交于AB两点,另一直线经过AB的中点,求直线y轴上的截距b的取值范围;

3)若Q是双曲线C上的任一点,为双曲线C的左、右两个焦点,从的角平分线的垂线,垂足为N,试求点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中e是自然对数的底数.

1)若上存在两个极值点,求a的取值范围;

2)当,设,若上存在两个极值点,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线绕坐标原点旋转适当角度可以成为函数的图象,关于此函数有如下四个命题:① 是奇函数;② 的图象过点;③ 的值域是;④ 函数有两个零点;则其中所有真命题的序号为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的准线经过点.

1)求抛物线的方程;

2)设是原点,直线恒过定点,且与抛物线交于两点,直线与直线分别交于点.请问:是否存在以为直径的圆经过轴上的两个定点?若存在,求出两个定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是圆柱体的一条母线,过底面圆的圆心是圆上不与重合的任意一点,已知棱.

1)求异面直线与平面所成角的大小;

2)将四面体绕母线旋转一周,求三边旋转过程中所围成的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列1121241248124816、…,其中第一项是,接下来的两项是,再接下来的三项是,以此类推,若且该数列的前项和为2的整数幂,则的最小值为(

A.440B.330C.220D.110

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1取何值时,方程)无解?有一解?有两解?有三解?

2)函数的性质通常指函数的定义域、值域、周期性、单调性、奇偶性等,请选择适当的探究顺序,研究函数的性质,并在此基础上,作出其在的草图;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(本题满分15分)已知m1,直线

椭圆分别为椭圆的左、右焦点.

)当直线过右焦点时,求直线的方程;

)设直线与椭圆交于两点,

的重心分别为.若原点在以线段

为直径的圆内,求实数的取值范围.

查看答案和解析>>

同步练习册答案