精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)= ,则该函数在(﹣∞,+∞)上是(
A.单调递减无最小值
B.单调递减有最小值
C.单调递增无最大值
D.单调递增有最大值

【答案】A
【解析】解答:令u(x)=2x+1,则f(u)=
因为u(x)在(﹣∞,+∞)上单调递增且u(x)>1,
而f(u)= 在(1,+∞)上单调递减,
故f(x)= 在(﹣∞,+∞)上单调递减,且无限趋于0,故无最小值.
故选A
分析:利用复合函数求解,先令u(x)=2x+1,f(u)= .u(x)在(﹣∞,+∞)上单调递增且u(x)>1,f(u)= 在(1,+∞)上单调递减,再由“同增异减”得到结论.
【考点精析】关于本题考查的函数单调性的判断方法,需要了解单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)= x2﹣mlnx,g(x)=x2﹣(m+1)x,m>0.
(1)求函数f(x)的单调区间;
(2)当m≥1时,讨论函数f(x)与g(x)图象的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程是 (φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ2.正方形ABCD的顶点都在C2上,且ABCD依逆时针次序排列,点A的极坐标为.

(1)求点ABCD的直角坐标;

(2)PC1上任意一点,求|PA|2|PB|2|PC|2|PD|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)=x2|x﹣a|(a∈R).21世纪教育网
(1)判定f(x)的奇偶性,并说明理由;
(2)当a≠0时,是否存在一点M(t,0),使f(x)的图象关于点M对称,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(lnxax)有两个极值点,则实数a的取值范围是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:f(x)=lg(ax﹣bx)(a>1>b>0).
(1)求f(x)的定义域;
(2)判断f(x)在其定义域内的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=kx2+(3+k)x+3,其中k为常数,且k≠0.
(1)若f(2)=3,求函数f(x)的表达式;
(2)在(1)的条件下,设函数g(x)=f(x)﹣mx,若g(x)在区间[﹣2,2]上是单调函数,求实数m的取值范围;
(3)是否存在k使得函数f(x)在[﹣1,4]上的最大值是4?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高二年级共有1600人,现统计他们某项任务完成时间介于30分钟到90分钟之间,图中是统计结果的频率分布直方图.

(1)求平均值、众数、中位数;

(2)若学校规定完成时间在分钟内的成绩为等;完成时间在分钟内的成绩为等;完成时间在分钟内的成绩为等,按成绩分层抽样从全校学生中抽取10名学生,则成绩为等的学生抽取人数为?

(3)在(2)条件下抽取的成绩为等的学生中再随机选取两人,求两人中至少有一人完成任务时间在分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有xf'(x)+f(x)<0恒成立,则不等式xf(x)>0的解集是(
A.(﹣2,0)∪(2,+∞)
B.(﹣2,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0)∪(0,2)

查看答案和解析>>

同步练习册答案