精英家教网 > 高中数学 > 题目详情

已知函数过点.
(1)求实数
(2)将函数的图像向下平移1个单位,再向右平移个单位后得到函数图像,设函数关于轴对称的函数为,试求的解析式;
(3)对于定义在上的函数,若在其定义域内,不等式恒成立,求实数的取值范围.

(1);(2);(3).

解析试题分析:(1)由条件即可解出;(2)函数向下平移1个单位得到,然后关于轴对称得到,代入(1)式的即可得到函数的解析式;(3)设,故,将不等式在其定义域恒成立的问题,转化二次函数时恒成立,然后根据二次函数的图像与性质进行求解即可得到的取值范围.
试题解析:(1)由已知        3分
(2)向下平移个单位后再向右平移个单位后得到函数,函数关于轴对称的函数为
        6分
(3)恒成立

即:,在时恒成立        8分

           11分
              13分
综合得:                      14分.
考点:1.对数函数的图像与性质;2.函数图像的平移与对称变换;3.二次函数的最值问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)满足条件f(0)=1,f(x+1)-f(x)=2x.
(1)求f(x);
(2)求f(x)在区间[-1,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象经过点
(1)求函数的解析式;
(2)设,用函数单调性的定义证明:函数在区间上单调递减;
(3)解不等式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)求不等式的解集:
(2)求函数的定义域:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

我国西部某省4A级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好村民俗文化基础设施后,任何一个月内(每月按30天计算)每天的旅游人数与第x天近似地满足(千人),且参观民俗文化村的游客人均消费近似地满足(元).
(1)求该村的第x天的旅游收入(单位千元,1≤x≤30,)的函数关系;
(2)若以最低日收入的20%作为每一天的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某厂生产某种产品(百台),总成本为(万元),其中固定成本为2万元, 每生产1百台,成本增加1万元,销售收入(万元),假定该产品产销平衡。
(1)若要该厂不亏本,产量应控制在什么范围内?
(2)该厂年产多少台时,可使利润最大?
(3)求该厂利润最大时产品的售价。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数满足
(1)求证,并求的取值范围;
(2)证明函数内至少有一个零点;
(3)设是函数的两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知偶函数y=f(x)定义域是[-3,3],当时,f(x)=-1.

(1)求函数y=f(x)的解析式;
(2)画出函数y=f(x)的图象,并利用图象写出函数y=f(x)的单调区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数对任意,都有,当时, 
(1)求证:是奇函数;
(2)试问:在时 是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式

查看答案和解析>>

同步练习册答案