精英家教网 > 高中数学 > 题目详情
如图,斜率为1的直线过抛物线Ω:y2=2px(p>0)的焦点F,与抛物线交于两点A,B,
(1)若|AB|=8,求抛物线Ω的方程;
(2)设C为抛物线弧AB上的动点(不包括A,B两点),求△ABC的面积S的最大值;
(3)设P是抛物线Ω上异于A,B的任意一点,直线PA,PB分别交抛物线的准线于M,N两点,证明M,N两点的纵坐标之积为定值(仅与p有关)
精英家教网
(1)设A(x1,y1),B(x2,y2).
∵直线l斜率为1且过焦点F(
p
2
,0)
,∴直线l的方程为y=x-
p
2

联立
y=x-
p
2
y2=2px
,消去y得到关于x的方程x2-3px+
p2
4
=0

由题意,△=9p2-p2>0.
由根与系数的关系得x1+x2=3p,x1x2=
p2
4

由抛物线的定义可得:|AB|=xx1+x2+p=4p,又|AB|=8,∴4p=8,∴p=2.
因此所求的抛物线方程为y2=4x.
(2)由题意可知:当过点C的切线与AB平行时三角形ABC的面积最大,
设此切线为y=x+t,与抛物线方程联立得
y=x+t
y2=2px
,消去y得到关于x的方程x2+(2t-2p)x+t2=0,
∴△=(2tt-2p)2-4t2=0,解得t=
p
2
,∴切线为y=x+
p
2

因此切线与直线AB的距离d=
|-
p
2
-
p
2
|
2
=
2
p
2

∴△ABC的最大面积=
1
2
×
2
p
2
×4p
=
2
p2

(3)设A(
y12
2p
y1)
B(
y22
2p
y2)
,P(
y02
2p
y0)

则直线PA的方程为y-y0=
y0-y1
y02
2p
-
y12
2p
(x-
y02
2p
)
,化为y-y0=
2p
y0+y1
(x-
y02
2p
)

x=-
p
2
,则yM=
y0y1-p2
y0+y1

同理可得yN=
y0y2-p2
y0+y2

∴yM•yN=
y02y1y2-p2y0(y1+y2)+p4
y02+y0(y1+y2)+y1y2

由(1)可得:y2-2py-p2=0,
∴y1+y2=2p,y1y2=-p2
∴yM•yN=
-y02p2-2p3y0+p4
y02+2py0-p2
=-p2为定值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A、B,M为抛物线弧AB上的动点.
(1)若|AB|=8,求抛物线的方程;
(2)求S△ABM的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,斜率为1的直线过抛物线Ω:y2=2px(p>0)的焦点F,与抛物线交于两点A,B,
(1)若|AB|=8,求抛物线Ω的方程;
(2)设C为抛物线弧AB上的动点(不包括A,B两点),求△ABC的面积S的最大值;
(3)设P是抛物线Ω上异于A,B的任意一点,直线PA,PB分别交抛物线的准线于M,N两点,证明M,N两点的纵坐标之积为定值(仅与p有关)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A、B,将直线AB按向量
a
=(-p,0)
平移得到直线l,N为l上的动点,M为抛物线弧AB上的动点.
(Ⅰ) 若|AB|=8,求抛物线方程.
(Ⅱ)求S△ABM的最大值.
(Ⅲ)求
NA
NB
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A、B,将直线AB按向量
a
=(-p,0)
平移到直线l,N为l上的动点.
(1)若|AB|=8,求抛物线的方程;
(2)求
NA
NB
的最小值.

查看答案和解析>>

科目:高中数学 来源:山东省枣庄市2010届高三年级调研考试数学(文科)试题 题型:解答题

(本题满分12分)

如图,斜率为1的直线过抛物线的焦点F,与抛物线交于两点AB

   (1)若|AB|=8,求抛物线的方程;

   (2)设C为抛物线弧AB上的动点(不包括AB两点),求的面积S的最大值;

   (3)设P是抛物线上异于AB的任意一点,直线PAPB分别交抛物线的准线于MN两点,证明MN两点的纵坐标之积为定值(仅与p有关)

 

查看答案和解析>>

同步练习册答案