分析 换元x=$\frac{1}{t}$,则dx=(-$\frac{1}{{t}^{2}}$)dt,则原式═-∫$\frac{t}{\sqrt{1-4{t}^{2}}}$dt=$\frac{1}{8}$∫$\frac{1}{\sqrt{1-4{t}^{2}}}$d(1-4t2)=$\frac{1}{4}$$\sqrt{1-4{t}^{2}}$+C,再将t转化成x.
解答 解:令x=$\frac{1}{t}$,则dx=(-$\frac{1}{{t}^{2}}$)dt,
∫$\frac{dx}{{x}^{2}\sqrt{{x}^{2}-4}}$=∫$\frac{1}{\frac{1}{{t}^{2}}\sqrt{\frac{1}{{t}^{2}}-4}}$(-$\frac{1}{{t}^{2}}$)dt=-∫$\frac{t}{\sqrt{1-4{t}^{2}}}$dt,
=$\frac{1}{8}$∫$\frac{1}{\sqrt{1-4{t}^{2}}}$d(1-4t2),
=$\frac{1}{4}$$\sqrt{1-4{t}^{2}}$+C,
=$\frac{\sqrt{{x}^{2}-4}}{4x}$+C,
∫$\frac{dx}{{x}^{2}\sqrt{{x}^{2}-4}}$=$\frac{\sqrt{{x}^{2}-4}}{4x}$+C.
点评 本题考查微积分基本定理,考查不定积分运算,考查换元法,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 76 | B. | 96 | C. | 146 | D. | 188 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com