精英家教网 > 高中数学 > 题目详情

【题目】已知多面体如图所示,底面为矩形,其中平面 .若 分别是 的中点,其中

(Ⅰ)证明:

(Ⅱ)若二面角的余弦值为,求的长.

【答案】(I)详见解析;(II).

【解析】试题分析:

(1)利用题意证得平面,然后利用线面垂直的性质和直线平行的结论可得

(2)建立空间直角坐标系,由平面向量的法向量和二面角的余弦值可求得的长为.

试题解析:

(Ⅰ)证明:取的中点,连接

因为是正方形,所以

因为分别是, 的中点,所以 ,

又因为 ,所以

所以四边形是平行四边形, 所以 .

因为 平面

,故

(Ⅱ)如图,以D为原点,射线DADCDS分别为xyz轴正方向,建立空间直角坐标系;设),则

因为⊥底面,所以平面的一个法向量为.

设平面SRB的一个法向量为

,则

x=1,得,所以

由已知,二面角的余弦值为

所以得 ,解得a =2,所以SD=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学生每次投篮的命中概率都为.现采用随机模拟的方法求事件的概率:先由计算器产生0到9之间的整数值随机数,制定1、2、3、4表示命中,5、6、7、8、9、0表示不命中;再以每3个随机数为一组,代表三次投篮的结果.经随机模拟产生如下20组随机数:989 537 113 730 488 556 027 393 257 431 683 569 458 812 932 271 925 191 966 907,据此统计,该学生三次投篮中恰有一次命中的概率约为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算与求解
(1)计算:2log32﹣log3 +log38﹣5
(2)已知a>0,a≠1,若loga(2x+1)<loga (4x﹣3),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于函数),

(1)当时,求函数的单调区间;

(2)若在区间内有且只有一个极值点,试求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1﹣ (a>0且a≠1)是定义在R上的奇函数.
(1)求a的值;
(2)求f(x)的值域;
(3)若关于x的方程|f(x)(2x+1)|=m有1个实根,求实数m的取值范围;
(4)当x∈(0,1]时,tf(x)≥2x﹣2恒成立,求实数t取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是等差数列的前项和,已知 .

1)求

2若数列求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=lg(3﹣4x+x2)的定义域为M.当x∈M时,求f(x)=2x+2﹣3×4x的最值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)若恒成立,求的取值范围;

(Ⅲ)证明:总存在,使得当,恒有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入,已知研发投入 (十万元)与利润 (百万元)之间有如下对应数据:

2

3

4

5

6

2

4

5

6

7

若由资料知呈线性相关关系。试求:

1)线性回归方程

2)估计时,利润是多少?

附:利用最小二乘法计算a,b的值时,可根据以下公式:

查看答案和解析>>

同步练习册答案