精英家教网 > 高中数学 > 题目详情
19.已知集合$A=\{x|{x^2}-2x>0\},B=\{x|-\sqrt{5}<x<\sqrt{5}\}$,则(  )
A.A⊆BB.B⊆AC.A∪B=RD.A∩B=∅

分析 容易求出集合A={x|x<0,或x>2},从而可判断集合A,B的关系.

解答 解:A={x|x<0,或x>2},且$B=\{x|-\sqrt{5}<x<\sqrt{5}\}$;
∴A∪B=R.
故选C.

点评 考查描述法表示集合的概念,一元二次不等式的解法,以及并集的概念.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知z=$\frac{-3-i}{1+2i}$,则z的虚部为(  )
A.1B.-1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图1,在等腰直角三角形ABC中,∠B=90°,将△ABC沿中位线DE翻折得到如图2所示的空间图形,使二面角A-DE-C的大小为θ(0<θ<$\frac{π}{2}$).

(1)求证:平面ABD⊥平面ABC;
(2)若θ=$\frac{π}{3}$,求直线AE与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow{b}$=(-1,k),$\overrightarrow{a}⊥\overrightarrow{b}$,则|$\overrightarrow{b}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.二项式${({2\sqrt{x}-\frac{a}{{\sqrt{x}}}})^n}$的展开式中所有二项式系数和为64,则展开式中的常数项为-160,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设f(x)为可导函数,且f′(2)=$\frac{1}{2}$,求$\underset{lim}{h→0}$$\frac{f(2-h)-f(2+h)}{h}$的值(  )
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,D为BC的中点,若$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{CB}$=$\overrightarrow{b}$,则$\overrightarrow{AD}$为(  )
A.$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$B.$\frac{1}{2}$$\overrightarrow{b}$-$\overrightarrow{a}$C.$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$D.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知0<α<$\frac{π}{2}$,且cos($\frac{π}{2}+α$)=$-\frac{\sqrt{2}}{2}$,则sinα=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点O(0,0),A(3,0),B(0,4),P是△OAB的内切圆上的一动点,设u=|PO|2+|PA|2+|PB|2,求u的最大值及相应的P点坐标.

查看答案和解析>>

同步练习册答案