【题目】如图,在四棱锥P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点,DE=EC.
(1)求证:平面ABE⊥平面BEF;
(2)设PA=a,若平面EBD与平面ABCD所成锐二面角 ,求a的取值范围.
【答案】
(1)证明:如图,
∵AB∥CD,CD⊥AD,AD=CD=2AB=2,F为CD的中点,
∴ABFD为矩形,AB⊥BF.
∵DE=EC,∴DC⊥EF,又AB∥CD,∴AB⊥EF
∵BF∩EF=F,∴AB⊥面BEF,又AE面ABE,
∴平面ABE⊥平面BEF
(2)解:∵DE=EC,∴DC⊥EF,又PD∥EF,AB∥CD,∴AB⊥PD
又AB⊥PD,所以AB⊥面PAD,AB⊥PA.
以AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴建立空间坐标系,
则B(1,0,0),D(0,2,0),P(0,0,a),C(2,2,0),E(1,1, )
平面BCD的法向量 ,
设平面EBD的法向量为 ,
由 ,即 ,取y=1,得x=2,z=
则 .
所以 .
因为平面EBD与平面ABCD所成锐二面角 ,
所以cosθ∈ ,即 .
由 得:
由 得: 或 .
所以a的取值范围是
【解析】(1)由题目给出的条件,可得四边形ABFD为矩形,说明AB⊥BF,再证明AB⊥EF,由线面垂直的判定可得AB⊥面BEF,再根据面面垂直的判定得到平面ABE⊥平面BEF;(2)以A点为坐标原点,AB、AD、AP所在直线分别为x、y、z轴建立空间坐标系,利用平面法向量所成交与二面角的关系求出二面角的余弦值,根据给出的二面角的范围得其余弦值的范围,最后求解不等式可得a的取值范围.
【考点精析】关于本题考查的平面与平面垂直的判定,需要了解一个平面过另一个平面的垂线,则这两个平面垂直才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+sin2x.给出以下四个命题:
①x>0,不等式f(x)<2x恒成立;
②k∈R,使方程f(x)=k有四个不相等的实数根;
③函数f(x)的图象存在无数个对称中心;
④若数列{an}为等差数列,且f(al)+f(a2)+f(a3)=3π,则a2=π.
其中的正确命题有 . (写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标平面中,的两个顶点为,平面内两点、同时满足:①++=;②||=||=||;③∥.
(1)求顶点的轨迹的方程;
(2)过点作两条互相垂直的直线,直线与点的轨迹相交弦分别为,设弦的中点分别为.求四边形的面积的最小值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,A,B,C所对的边分别为a,b,c,已知sinC= .
(1)若a+b=5,求△ABC面积的最大值;
(2)若a=2,2sin2A+sinAsinC=sin2C,求b及c的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的图象的相邻两对称中心的距离为π,且f(x+ )=f(﹣x),则函数y=f( ﹣x)是( )
A.偶函数且在x=0处取得最大值
B.偶函数且在x=0处取得最小值
C.奇函数且在x=0处取得最大值
D.奇函数且在x=0处取得最小值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com