精英家教网 > 高中数学 > 题目详情

定义:若对定义域内的任意两个,均有成立,则称函数上的“平缓函数”。

(1)  判断的单调性并证明;

(2)  判断是否为R上的“平缓函数”,并说明理由;

(3)  若数列中,总有

 

【答案】

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在(0,+∞)的可导函数,且不恒为0,记gn(x)=
f(x)
n
(n∈N*)
.若对定义域内的每一个x,总有gn(x)<0,则称f(x)为“n阶负函数”;若对定义域内的每一个x,总有[gn(x)]≥0,则称f(x)为“n阶不减函数”([gn(x)]为函数gn(x)的导函数).
(1)若f(x)=
a
x3
-
1
x
-x
(x>0)既是“1阶负函数”,又是“1阶不减函数”,求实数a的取值范围;
(2)对任给的“n阶不减函数”f(x),如果存在常数c,使得f(x)<c恒成立,试判断f(x)是否为“n阶负函数”?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南通三模)设f(x)是定义在(0,+∞)的可导函数,且不恒为0,记gn(x)=
f(x)
xn
(n∈N*)
.若对定义域内的每一个x,总有gn(x)<0,则称f(x)为“n阶负函数”;若对定义域内的每一个x,总有[gn(x)]≥0,则称f(x)为“n阶不减函数”([gn(x)]为函数gn(x)的导函数).
(1)若f(x)=
a
x3
-
1
x
-x(x>0)
既是“1阶负函数”,又是“1阶不减函数”,求实数a的取值范围;
(2)对任给的“2阶不减函数”f(x),如果存在常数c,使得f(x)<c恒成立,试判断f(x)是否为“2阶负函数”?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)定义:对于函数,.若对定义域内的恒成立,则称函数函数.(1)请举出一个定义域为函数,并说明理由;(2)对于定义域为函数,求证:对于定义域内的任意正数,均有;

(3)对于值域函数,求证:.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省南通市高三第三次调研测试数学试卷(解析版) 题型:解答题

是定义在的可导函数,且不恒为0,记.若对定义域内的每一个,总有,则称为“阶负函数”;若对定义域内的每一个,总有

则称为“阶不减函数”(为函数的导函数).

(1)若既是“1阶负函数”,又是“1阶不减函数”,求实数的取值范围;

(2)对任给的“2阶不减函数”,如果存在常数,使得恒成立,试判断是否为“2阶负函数”?并说明理由.

 

查看答案和解析>>

同步练习册答案