精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,圆C的方程为ρ=4cosθ,以极点为坐标原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l经过点M(5,6),且斜率为
(1)求圆 C的平面直角坐标方程和直线l的参数方程;
(2)若直线l与圆C交于A,B两点,求|MA|+|MB|的值.

【答案】
(1)解:∵圆C的方程为ρ=4cosθ,∴ρ2=4ρcosθ,

∵ρ2=x2+y2,ρcosθ=x,

∴圆C的平面直角坐标方程为:(x﹣2)2+y2=4,

∵直线l经过点M(5,6),且斜率为

∴tanθ= ,cos ,sinθ=

∴直线l的参数方程为 为参数 )


(2)解:把直线l的参数方程代入圆C:(x﹣2)2+y2=4,

得:5t2+66t+205=0,


【解析】(1)由ρ2=x2+y2 , ρcosθ=x,能求出圆C的平面直角坐标方程,由直线l经过点M(5,6),且斜率为 ,能求出直线l的参数方程.(2)把直线l的参数方程代入圆C:(x﹣2)2+y2=4,得5t2+66t+205=0,由此能求出|MA|+|MB|的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆Γ: + =1(a>b>0)的离心率与双曲线x2﹣y2=a2的离心率之和为 ,B1、B2为椭圆Γ短轴的两个端点,P是椭圆Γ上一动点(不与B1、B2重合),直线B1P、B2P分别交直线l:y=4于M、N两点,△B1B2P的面积记为S1 , △PMN的面积记为S2 , 且S1的最大值为4
(1)求椭圆Γ的方程;
(2)若S2=λS1 , 当λ取最小值时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时,.现已画出函数轴左侧的图象,如图所示,根据图象:

(1)请将函数的图象补充完整并写出该函数的增区间(不用证明).

(2)求函数的解析式.

(3)若函数,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +
(1)求f(x)≥f(4)的解集;
(2)设函数g(x)=k(x﹣3),k∈R,若f(x)>g(x)对任意的x∈R都成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别是
(1)求角C;
(2)若△ABC的中线CD的长为1,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ﹣2cosθ﹣6sinθ+ =0,直线l的参数方程为 (t为参数).
(1)求曲线C的普通方程;
(2)若直线l与曲线C交于A,B两点,点P的坐标为(3,3),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (e为自然对数的底数).
(1)当a=b=0时,直接写出f(x)的值域(不要求写出求解过程);
(2)若a= ,求函数f(x)的单调区间;
(3)若f(1)=1,且方程f(x)=1在(0,1)内有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线l的参数方程为 (t为参数,0<φ<π),曲线C的极坐标方程为ρcos2θ=8sinθ.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A、B两点,当φ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1(t为参数,且t≠0),其中0 , 在以O为极点x轴正半轴为极轴的极坐标系中,曲线C2:=2sin , C3:=2cos
(1)求C2与C3交点的直角坐标
(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|最大值

查看答案和解析>>

同步练习册答案