精英家教网 > 高中数学 > 题目详情

【题目】曲线的极坐标方程为(常数),曲线的参数方程为为参数).

1)求曲线的直角坐标方程和的普通方程;

2)若曲线有两个不同的公共点,求实数的取值范围.

【答案】1;(2

【解析】

1)根据直角坐标与极坐标关系及题目条件得曲线的直角坐标方程,利用消元法消去t可得的普通方程;

2)若曲线有两个不同的公共点,法一:方程联立利用根与系数关系,利用判别式解出即可求实数的取值范围;法二:数形结合可得圆心到直线距离小于半径,解出即可求实数的取值范围.

1)方法一:由得:.

得:,即.

曲线的直角坐标方程为:的普通方程为:.

方法二:由得:.

得:;由得:.

.

整理得的普通方程为:.

曲线的直角坐标方程为:的普通方程为:.

2)方法一:由得:.

由曲线有两个不同的公共点得:解得:.

又当圆过点时,有,且曲线表示不过点的直线.

.

实数的取值范围为.

方法二:圆心到直线的距离为:.

由曲线有两个不同的公共点得:,即.

又当圆过点时,有,且曲线表示不过点的直线.

.

实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)定义:对于函数,若存在,使成立,则称为函数的不动点.如果函数存在不动点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面的中点,相交于点.

(Ⅰ)求证:平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:

AQI指数值

0~50

51~100

101~150

151~200

201~300

>300

空气质量

轻度污染

中度污染

重度污染

严重污染

下图是某市10月1日—20日AQI指数变化趋势:

下列叙述错误的是

A. 这20天中AQI指数值的中位数略高于100

B. 这20天中的中度污染及以上的天数占

C. 该市10月的前半个月的空气质量越来越好

D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地自2014年至2019年每年年初统计所得的人口数量如表所示:

年份

2014

2015

2016

2017

2018

2019

人数(单位:千人)

2082

2135

2203

2276

2339

2385

1)根据表中的数据判断从2014年到2019年哪个跨年度的人口增长数量最大?并描述该地人口数量的变化趋势;

2)研究人员用函数拟合该地的人口数量,其中的单位是年,2014年年初对应时刻的单位是千人,经计算可得,请解释的实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l 椭圆C 分别为椭圆的左右焦点.

1)当直线l过右焦点时,求C的标准方程;

2)设直线l与椭圆C交于AB两点,O为坐标原点,若∠AOB是钝角,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法正确的是___(请填写所有正确的命题序号).

①命题“若,则”的否命题为:“若,则”;

②命题“若,则”的逆否命题为真命题;

③条件,条件,则的充分不必要条件;

④已知时,,若是锐角三角形,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某区在2019年教师招聘考试中,参加四个岗位的应聘人数、录用人数和录用比例(精确到1%)如下:

岗位

男性应聘人数

男性录用人数

男性录用比例

女性应聘人数

女性录用人数

女性录用比例

269

167

62%

40

24

60%

217

69

32%

386

121

31%

44

26

59%

38

22

58%

3

2

67%

3

2

67%

总计

533

264

50%

467

169

36%

1)从表中所有应聘人员中随机抽取1人,试估计此人被录用的概率;

2)将应聘岗位的男性教师记为,女性教师记为,现从应聘岗位的6人中随机抽取2.

i)试用所给字母列举出所有可能的抽取结果;

ii)设为事件抽取的2人性别不同,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.经数据处理后得到该样本的频率分布直方图,其中质量指标值不大于1.50的茎叶图如图所示,以这100件产品的质量指标值在各区间内的频率代替相应区间的概率.

(1)求图中的值;

(2)估计这种产品质量指标值的平均数及方差(说明:①同一组中的数据用该组区间的中点值作代表;②方差的计算只需列式正确);

(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于1.50的产品至少要占全部产品的”的规定?

查看答案和解析>>

同步练习册答案