精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=Asin(x+)(A>0>00<<)的部分图象如图所示,又函数g(x)=f(x+).

1)求函数g(x)的单调增区间;

2)设ABC的内角ABC的对边分别为abc,又c=,且锐角C满足g(C)= -1,若sinB=2sinA,,求ABC的面积.

【答案】1;(2.

【解析】

1)根据图象最值确定A,根据半个周期确定,根据最小值点确定,再根据诱导公式化简g(x),最后根据余弦函数性质求单调增区间;

2)先求C,再根据正弦定理化边的关系,结合余弦定理解得,最后根据三角形面积公式求结果.

1)由函数的部分图象可得

又函数图像过点 ,则,即

,即

,则

,得

所以函数的单调增区间为

2)由,得,因为,所以

所以

,由正弦定理得.

,由余弦定理,得,即.

由①②解得. 所以的面积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】哈尔滨市第三中学校响应教育部门疫情期间停课不停学的号召,实施网络授课,为检验学生上网课的效果,高三学年进行了一次网络模拟考试.全学年共1500人,现从中抽取了100人的数学成绩,绘制成频率分布直方图(如下图所示).已知这100人中分数段的人数比分数段的人数多6.

1)根据频率分布直方图,求ab的值,并估计抽取的100名同学数学成绩的中位数;

2)现用分层抽样的方法从分数在的两组同学中随机抽取6名同学,从这6名同学中再任选2名同学作为网络课堂学习优秀代表发言,求这2名同学的分数不在同一组内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆经过点,且动圆轴截得的弦长为4,记圆心的轨迹为曲线.

1)求曲线的标准方程;

2)过轴下方一点向曲线作切线,切点记作,直线交曲线于点,若直线的斜率乘积为,点在以为直径的圆上,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务时间的统计数据如下:

超过1小时

不超过1小时

20

8

12

m

1)求mn

2)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?

3)从该校学生中随机调查60名学生,一周参加社区服务时间超过1小时的人数记为X,以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,求X的分布列和数学期望.

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

K2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某学校高三年级的三个班在一学期内的六次数学测试的平均成绩y关于测试序号x的函数图象,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图象,给出下列结论:

①一班成绩始终高于年级平均水平,整体成绩比较好;

②二班成绩不够稳定,波动程度较大;

③三班成绩虽然多次低于年级平均水平,但在稳步提升.

其中错误的结论的个数为( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为,且离心率为.

1)求椭圆的标准方程;

2)设椭圆的左焦点为,点是椭圆与轴负半轴的交点,经过的直线与椭圆交于点,经过且与平行的直线与椭圆交于点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年新型冠状病毒肺炎蔓延全国,作为主要战场的武汉,仅用了十余天就建成了小汤山模式的火神山医院和雷神山医院,再次体现了中国速度.随着疫情发展,某地也需要参照小汤山模式建设临时医院,其占地是出一个正方形和四个以正方形的边为底边、腰长为400m的等腰三角形组成的图形(如图所示),为使占地面积最大,则等腰三角形的底角为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),将曲线上各点的横坐标都缩短为原来的倍,纵坐标坐标都伸长为原来的倍,得到曲线,在极坐标系(与直角坐标系取相同的单位长度,且以原点为极点,以轴非负半轴为极轴)中,直线的极坐标方程为

(1)求直线和曲线的直角坐标方程;

(2)设点是曲线上的一个动点,求它到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为阻隔新冠肺炎病毒,多地进行封城.封城一段时间后,有的人情绪波动不大,反应一般;也有的人情绪波动大,反应强烈.某社区为了解民众心理反应,随机调查了100位居民,得到数据如下表:

反应强烈

反应一般

合计

20

20

40

45

15

60

合计

65

35

100

1)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若从该社区的男性居民中随机抽取3位,记其中反应强烈的人数为X,求随机变量X的分布列和数学期望;

2)根据调查数据,能否在犯错的概率不超过的前提下认为反应强烈与性别有关,并说明理由.

参考数据:

k

(参考公式:,其中

查看答案和解析>>

同步练习册答案